Vertical-axis wind turbines (VAWTs) demonstrate good adaptability for harnessing wind energy on the building rooftops. However, knowledge gaps still exist in the understanding of the wind resources on the rooftop, the operation of VAWTs, and its effect on the wind field. To add new knowledge on this subject, the operation of wind turbines modeled by the NACA0018 airfoil on the rooftop of a building is experimentally studied via wind tunnel. The results indicate that flow above the rooftop of building shows an obvious speed reduction due to the blunt body effect of the turbines, and the turbulence intensities are dramatically enhanced. The different tip-speed ratios, wind directions, and installation locations of wind turbine have significant effect on flow field on the roof. Due to the flow characteristics above the rooftop, the power spectral density of the fluctuating wind speed exhibits high energy below the top position of the VAWT on the rooftop. Additionally, the wind profiles and probability distribution of the wake of VAWTs on the rooftop are analyzed and mathematically fitted for quantifying wind field characteristics rooftop turbines on the roof. For the VAWTs investigated in this study, the impacts of the operation of VAWTs on the wind field are non-negligible on the roof of building. The findings of this study will provide valuable insights for the optimal placement of VAWTs and utilization of wind energy on the rooftops.

1.
M. K.
Dixit
, “
Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters
,”
Renewable Sustainable Energy Rev.
79
,
390
413
(
2017
).
2.
R.
Reja
,
R.
Amin
,
Z.
Tasneem
,
M. F.
Ali
,
M. R.
Islam
,
D. K.
Saha
,
F. R.
Badal
,
M. H.
Ahamed
,
S. I.
Moyeen
, and
S. K.
Das
, “
A review of the evaluation of urban wind resources: Challenges and perspectives
,”
Energy Build.
257
,
111781
(
2022
).
3.
M. M. M.
Saad
and
N.
Asmuin
, “
Comparison of horizontal axis wind turbines and vertical axis wind turbines
,”
IOSR J. Eng.
4
(
8
),
27
30
(
2014
).
4.
K.-Y.
Lee
,
S.-H.
Tsao
,
C.-W.
Tzeng
, and
H.-J.
Lin
, “
Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building
,”
Appl. Energy
209
,
383
391
(
2018
).
5.
E.
Dayan
, “
Wind energy in buildings: Power generation from wind in the urban environment-where it is needed most
,”
Refocus
7
(
2
),
33
38
(
2006
).
6.
X. F.
Yuan
and
Y.
Zhang
, “
Progress in the study of wind energy utilization in the built environment
,”
J. Nat. Resour.
26
(
5
),
891
898
(
2011
) (in Chinese).
7.
Q.
Li
,
F.
Chen
,
Y.
Li
, and
Y.
Lee
, “
Implementing wind turbines in a tall building for power generation: A study of wind loads and wind speed amplifications
,”
J. Wind Eng. Ind. Aerodyn.
116
,
70
82
(
2013
).
8.
Q.
Zou
,
Z.
Li
,
X.
Zeng
,
C.
Wang
, and
F.
Zou
, “
The analysis of characteristics of wind field on roof based on field measurement
,”
Energy Build.
240
,
110877
(
2021
).
9.
Y.
Li
,
R.
Wang
,
Y.
Li
,
M.
Zhang
, and
C.
Long
, “
Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach
,”
Appl. Energy
329
,
120291
(
2023
).
10.
H.
Peng
,
H.
Liu
, and
J.
Yang
, “
A review on the wake aerodynamics of H-rotor vertical axis wind turbines
,”
Energy
232
,
121003
(
2021
).
11.
K. S.
Hansen
,
R. J.
Barthelmie
,
L. E.
Jensen
, and
A.
Sommer
, “
The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm
,”
Wind Energy
15
(
1
),
183
196
(
2012
).
12.
J. O.
Dabiri
, “
Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays
,”
J. Renewable Sustainable Energy
3
(
4
),
043104
(
2011
).
13.
T.
Maeda
,
Y.
Kamada
,
T.
Ogasawara
,
A.
Nakai
, and
T.
Kasuya
, “
Investigation of power performance and wake on a straight-bladed vertical axis wind turbine with field experiments
,”
Energy
141
,
1113
1123
(
2017
).
14.
M.
Kinzel
,
Q.
Mulligan
, and
J. O.
Dabiri
, “
Energy exchange in an array of vertical-axis wind turbines
,”
J. Turbul.
13
(
1
),
N38
(
2012
).
15.
F.
Balduzzi
,
A.
Bianchini
,
E. A.
Carnevale
,
L.
Ferrari
, and
S.
Magnani
, “
Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building
,”
Appl. Energy
97
,
921
929
(
2012
).
16.
Y. G.
Heo
,
N. J.
Choi
,
K. H.
Choi
,
H. S.
Ji
, and
K. C.
Kim
, “
CFD study on aerodynamic power output of a 110 kW building augmented wind turbine
,”
Energy Build.
129
,
162
173
(
2016
).
17.
W.
Xu
,
G.
Li
,
X.
Zheng
,
Y.
Li
,
S.
Li
,
C.
Zhang
, and
F.
Wang
, “
High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building
,”
Renewable Energy
177
,
461
474
(
2021
).
18.
W.
Xu
,
Y.
Li
,
G.
Li
,
S.
Li
,
C.
Zhang
, and
F.
Wang
, “
High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings
,”
Renewable Energy
176
,
25
39
(
2021
).
19.
I.
Abohela
,
N.
Hamza
, and
S.
Dudek
, “
Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines
,”
Renewable Energy
50
,
1106
1118
(
2013
).
20.
S.
Liu
,
W.
Pan
,
X.
Zhao
,
H.
Zhang
,
X.
Cheng
,
Z.
Long
, and
Q.
Chen
, “
Influence of surrounding buildings on wind flow around a building predicted by CFD simulations
,”
Build. Environ.
140
,
1
10
(
2018
).
21.
J.
Guo
,
P.
Zeng
, and
L.
Lei
, “
Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments
,”
Energy
174
,
553
561
(
2019
).
22.
R.
Howell
,
N.
Qin
,
J.
Edwards
, and
N.
Durrani
, “
Wind tunnel and numerical study of a small vertical axis wind turbine
,”
Renewable Energy
35
(
2
),
412
422
(
2010
).
23.
W.-C.
Wang
,
W. T.
Chong
, and
T.-H.
Chao
, “
Performance analysis of a cross-axis wind turbine from wind tunnel experiments
,”
J. Wind Eng. Ind. Aerodyn.
174
,
312
329
(
2018
).
24.
Y.
Jooss
,
R.
Bolis
,
T.
Bracchi
, and
R. J.
Hearst
, “
Flow field and performance of a vertical-axis wind turbine on model buildings
,”
Flow
2
,
E10
(
2022
).
25.
A.
Hossain
,
A.
Rahman
,
M.
Rahman
et al, “
Prediction of power generation of small scale vertical axis wind turbine using fuzzy logic
,”
J. Urban Environ. Eng.
3
(
2
),
43
51
(
2009
).
26.
Y.
Tominaga
, “
CFD prediction for wind power generation by a small vertical axis wind turbine: A case study for a university campus
,”
Energies
16
(
13
),
4912
(
2023
).
27.
P.
Jain
and
A.
Abhishek
, “
Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching
,”
Renewable Energy
97
,
97
113
(
2016
).
28.
Y.
Li
,
B.
Feng
,
G.
Li
,
J.
Qi
,
D.
Zhao
, and
Y.
Mu
, “
Optimal distributed generation planning in active distribution networks considering integration of energy storage
,”
Appl. Energy
210
,
1073
1081
(
2018
).
29.
M. R.
Castelli
,
A.
Englaro
, and
E.
Benini
, “
The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD
,”
Energy
36
(
8
),
4919
4934
(
2011
).
30.
M. M. A.
Bhutta
,
N.
Hayat
,
A. U.
Farooq
,
Z.
Ali
,
S. R.
Jamil
, and
Z.
Hussain
, “
Vertical axis wind turbine–A review of various configurations and design techniques
,”
Renewable Sustainable Energy Rev.
16
(
4
),
1926
1939
(
2012
).
31.
H.
Yali
,
W.
Jianwen
,
W.
Qiang
, and
W.
Xinting
, “
Influence of roof shape on micrositing of rooftop wind turbine in the building group
,”
J. Mech. Eng.
54
(
2
),
191
200
(
2018
).
32.
H. J.
Ham
and
B.
Bienkiewicz
, “
Wind tunnel simulation of TTU flow and building roof pressure
,”
J. Wind Eng. Ind. Aerodyn.
77
,
119
133
(
1998
).
33.
S.
Wasiati
,
F.
Augusta
,
V.
Purwanto
,
P.
Wulandari
, and
A.
Syahrirar
, “
Darrieus type vertical axis wind turbine (VAWT) design
,”
Proc. J. Phys.
1517
(
1
),
012064
(
2020
).
34.
S.
Xiaojing
,
L.
Qidi
,
H.
Diangui
, and
W.
Guoqing
, “
Airfoil selection of lift type vertical axis wind turbine
,”
J. Eng. Thermophys.
33
(
3
),
408
410
(
2012
) (in Chinese).
35.
G.
Tescione
,
D.
Ragni
,
C.
He
,
C. S.
Ferreira
, and
G.
Van Bussel
, “
Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry
,”
Renewable Energy
70
,
47
61
(
2014
).
36.
P.
Bachant
and
M.
Wosnik
, “
Characterising the near-wake of a cross-flow turbine
,”
J. Turbulence
16
(
4
),
392
410
(
2015
).
37.
D. B.
Araya
,
T.
Colonius
, and
J. O.
Dabiri
, “
Transition to bluff-body dynamics in the wake of vertical-axis wind turbines
,”
J. Fluid Mech.
813
,
346
381
(
2017
).
38.
T.
Guo
,
X.
Guo
,
Z.
Gao
,
S.
Li
,
X.
Zheng
,
X.
Gao
,
R.
Li
,
T.
Wang
,
Y.
Li
, and
D.
Li
, “
Nacelle and tower effect on a stand-alone wind turbine energy output—A discussion on field measurements of a small wind turbine
,”
Appl. Energy
303
,
117590
(
2021
).
You do not currently have access to this content.