The design of a light source for a molten salt receiver experimental system has become challenging owing to the complex heating characteristics of the half-circumference surface during operation. Electromagnetic induction heating is an innovative technology that can replicate a half-circle heating scenario. However, its feasibility must be verified. In this study, we constructed a single receiver tube experimental system using induction heaters and developed a 3D numerical model coupling electromagnetic field to analyze the tube temperature distribution and molten salt temperature rise during preheating and salt circulation, considering various parameters. The results indicated that the numerical simulation agreed well with the experimental results, and the induction heater successfully reproduced the half circumference heating scenario. During preheating, a lower heat flux and higher wind speed result in a more uniform temperature distribution along the circumference of the tube wall, facilitating comprehensive preheating. During salt circulation, the heat flux and inlet salt mass flow significantly affected the temperature of the tube wall but had a relatively small effect on the back-side wall. Wind speed had the opposite effect, which was related to the arrangement of the experimental site. A higher heat flux, lower wind speed, and higher inlet salt mass flow led to a higher temperature increase in the molten salt.

1.
L.
Juan
,
Y.
Shen
,
X.
Li
, and
A.
Hasnaoui
, “
BRICS carbon neutrality target: Measuring the impact of electricity production from renewable energy sources and globalization
,”
J. Environ. Manage.
298
,
113460
(
2021
).
2.
B.
Wan
,
L.
Tian
,
M.
Fu
, and
G.
Zhang
, “
Green development growth momentum under carbon neutrality scenario
,”
J. Cleaner Prod.
316
,
128327
(
2021
).
3.
A.
Peinado Gonzalo
,
A.
Pliego Marugán
, and
F. P.
García Márquez
, “
A review of the application performances of concentrated solar power systems
,”
Appl. Energy
255
,
113893
(
2019
).
4.
A.
Bonk
,
S.
Sau
,
N.
Uranga
,
M.
Hernaiz
, and
T.
Bauer
, “
Advanced heat transfer fluids for direct molten salt line-focusing CSP plants
,”
Prog. Energy Combust. Sci.
67
,
69
87
(
2018
).
5.
N.
Kannan
and
D.
Vakeesan
, “
Solar energy for future world: A review
,”
Renewable Sustainable Energy Rev.
62
,
1092
1105
(
2016
).
6.
U.
Pelay
,
L.
Luo
,
Y.
Fan
,
D.
Stitou
, and
M.
Rood
, “
Thermal energy storage systems for concentrated solar power plants
,”
Renewable Sustainable Energy Rev.
79
,
82
100
(
2017
).
7.
Y.
He
,
Y.
Qiu
,
K.
Wang
,
F.
Yuan
,
W.
Wang
,
M.
Li
, and
J.
Guo
, “
Perspective of concentrating solar power
,”
Energy
198
,
117373
(
2020
).
8.
M.
Imran Khan
,
F.
Asfand
, and
S. G.
Al-Ghamdi
, “
Progress in research and technological advancements of commercial concentrated solar thermal power plants
,”
Sol. Energy
249
,
183
226
(
2023
).
9.
L. L.
Vant-Hull
, “
The role of “Allowable Flux Density” in the design and operation of molten-salt solar central receivers
,”
J. Sol. Energy Eng.
124
,
165
169
(
2002
).
10.
Y.
Zuo
,
Y.
Li
, and
H.
Zhou
, “
Numerical study on preheating process of molten salt tower receiver in windy conditions
,”
Energy
251
,
123893
(
2022
).
11.
R.
Pérez-Álvarez
,
P. Á.
González-Gómez
,
A.
Acosta-Iborra
, and
D.
Santana
, “
Thermal stress and fatigue damage of central receiver tubes during their preheating
,”
Appl. Therm. Eng.
195
,
117115
(
2021
).
12.
R.
Pérez-Álvarez
,
E.
Cano-Pleite
,
D.
Santana
, and
A.
Acosta-Iborra
, “
Impact of a mechanical attachment on the preheating temperatures of a central receiver tube
,”
Appl. Therm. Eng.
215
,
118854
(
2022
).
13.
Y.
Li
,
H.
Zhou
,
Y.
Zuo
, and
M.
Zhang
, “
Experimental and numerical study on the preheating process of a lab-scale solar molten salt receiver
,”
Renewable Energy
182
,
602
614
(
2022
).
14.
M. R.
Rodríguez-Sánchez
,
C.
Marugan-Cruz
,
A.
Acosta-Iborra
, and
D.
Santana
, “
Comparison of simplified heat transfer models and CFD simulations for molten salt external receiver
,”
Appl. Therm. Eng.
73
,
993
1005
(
2014
).
15.
A.
Albarbar
and
A.
Arar
, “
Performance assessment and improvement of central receivers used for solar thermal plants
,”
Energies
12
,
3079
(
2019
).
16.
Q.
Yu
,
P.
Fu
,
Y.
Yang
,
J.
Qiao
,
Z.
Wang
, and
Q.
Zhang
, “
Modeling and parametric study of molten salt receiver of concentrating solar power tower plant
,”
Energy
200
,
117505
(
2020
).
17.
M. A.
Qaisrani
,
J.
Fang
,
Y.
Jin
,
Z.
Wan
,
N.
Tu
,
M.
Khalid
,
M. U.
Rahman
, and
J.
Wei
, “
Thermal losses evaluation of an external rectangular receiver in a windy environment
,”
Sol. Energy
184
,
281
291
(
2019
).
18.
M. A.
Qaisrani
,
J.
Wei
,
J.
Fang
,
Y.
Jin
,
Z.
Wan
, and
M.
Khalid
, “
Heat losses and thermal stresses of an external cylindrical water/steam solar tower receiver
,”
Appl. Therm. Eng.
163
,
114241
(
2019
).
19.
C.
Zhang
,
Y.
Wu
, and
Y.
Lu
, “
Experimental and numerical study on induction heating performance of quaternary nitrate‐nitrite molten salt
,”
Int. J. Energy Res.
45
,
2211
2221
(
2021
).
20.
M.
Fernández-Torrijos
,
C.
Sobrino
,
J. A.
Almendros-Ibáñez
,
C.
Marugán-Cruz
, and
D.
Santana
, “
Inverse heat problem of determining unknown surface heat flux in a molten salt loop
,”
Int. J. Heat Mass Transfer
139
,
503
516
(
2019
).
21.
M.
Fernández-Torrijos
,
C.
Sobrino
,
C.
Marugán-Cruz
, and
D.
Santana
, “
Experimental and numerical study of the heat transfer process during the startup of molten salt tower receivers
,”
Appl. Therm. Eng.
178
,
115528
(
2020
).
22.
M.
Fernández-Torrijos
,
C.
Marugán-Cruz
,
C.
Sobrino
,
D.
Santana
, and
C.
Richter
, “
Experimental test of tubular external molten salt receivers under non-steady state conditions
,”
AIP Conf. Proc.
2126
,
110001
(
2019
).
23.
M. R.
Rodríguez-Sánchez
,
A.
Pueyo-Balsells
,
A.
Montoya
, and
J. A.
Artero-Guerrero
, “
Solar simulator based on induction heating to characterize experimentally tubular solar central receivers
,”
Appl. Therm. Eng.
220
,
119781
(
2023
).
24.
E.
Cano-Pleite
,
M.
Fernández-Torrijos
,
D.
Santana
, and
A.
Acosta-Iborra
, “
Heat generation depth and temperature distribution in solar receiver tubes subjected to induction
,”
Appl. Therm. Eng.
204
,
117902
(
2022
).
25.
B.
Du
,
Y.
He
,
Z.
Zheng
, and
Z.
Cheng
, “
Analysis of thermal stress and fatigue fracture for the solar tower molten salt receiver
,”
Appl. Therm. Eng.
99
,
741
750
(
2016
).
You do not currently have access to this content.