In this paper, a precise, stable, and reliable dish concentrated photovoltaic system on the roof is demonstrated, and parameters of a model for triple-junction solar cell, incorporating radiative coupling, are extracted from the measured data, providing electrical engineers with valuable insights. By comparing the models with and without radiative coupling to measured curves, it is confirmed that radiative coupling has significant impacts on the shape of curves. It is found that the curve fitting by the model without radiative coupling has a prominent concavity near the maximum power point, which is not consistent with the measured data, proving that radiative coupling yields impressive compensation effect on the total current. A total of 16 parameters are identified in parallel, and the variation of some parameters with bias are also provided. In addition, how various parameters in each subcell influence the I–V curve and efficiency of solar cell are compared and summarized. An application of the model is presented at last.

1.
D. N.
Micha
and
R. T.
Silvares Junior
, “
The influence of solar spectrum and concentration factor on the material choice and the efficiency of multijunction solar cells
,”
Sci. Rep.
9
(
1
),
20055
(
2019
).
2.
D.
Xia
and
J. J.
Krich
, “
Efficiency increase in multijunction monochromatic photovoltaic devices due to luminescent coupling
,”
J. Appl. Phys.
128
,
013101
(
2020
).
3.
H.
Xu
,
A.
Delamarre
,
B. M. F.
Yu Jeco
et al, “
Current transport efficiency analysis of multijunction solar cells by luminescence imaging
,”
Prog. Photovoltaics
27
(
10
),
835
843
(
2019
).
4.
C. S.
Schuster
,
M.
Koc
, and
S.
Yerci
, “
Analytic modelling of multi-junction solar cells via multi-diodes
,”
Renewable Energy
184
,
1033
1042
(
2022
).
5.
G.
Timò
,
A.
Martinelli
, and
L. C.
Andrean
, “
A new theoretical approach for the performance simulation of multijunction solar cells
,”
Prog. Photovoltaics
28
(
4
),
279
294
(
2020
).
6.
A.
Fell
,
O.
Schultz-Wittmann
, and
C.
Messmer
, “
Combining drift-diffusion and equivalent-circuit models for efficient 3D tandem solar cell simulations
,”
IEEE J. Photovoltaics
12
(
6
),
1469
1476
(
2022
).
7.
A.
Ben Or
and
J.
Appelbaum
, “
Estimation of multi‐junction solar cell parameters
,”
Prog. Photovoltaics: Res. Appl.
21
(
4
),
713
723
(
2013
).
8.
A.
Orioli
and
A.
Di Gangi
, “
A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data
,”
Appl. Energy
102
,
1160
1177
(
2013
).
9.
J. D. B.
Rodríguez
,
C. A.
Ramos-Paja
, and
E. F.
Mejía
, “
Modeling and parameter calculation of photovoltaic fields in irregular weather conditions
,”
Ingeniería
17
(
1
),
37
48
(
2012
).
10.
A. J.
Bühler
and
A.
Krenzinger
, “
Method for photovoltaic parameter extraction according to a modified double‐diode model
,”
Prog. Photovoltaics: Res. Appl.
21
(
5
),
884
893
(
2013
).
11.
T.
Sogabe
,
A.
Ogura
,
M.
Ohba
et al, “
Self‐consistent electrical parameter extraction from bias dependent spectral response measurements of III‐V multi‐junction solar cells
,”
Prog. Photovoltaics: Res. Appl.
23
(
1
),
37
48
(
2015
).
12.
A. R.
Jordehi
, “
Parameter estimation of solar photovoltaic (PV) cells: A review
,”
Renewable Sustain. Energy Rev.
61
,
354
371
(
2016
).
13.
S.
Kumar
,
A.
Singh
, and
A.
Dhar
, “
Parameter extraction using global particle swarm optimization approach and the influence of polymer processing temperature on the solar cell parameters
,”
AIP Adv.
7
(
8
),
085117
(
2017
).
14.
N. F. A.
Hamid
,
N. A.
Rahim
, and
J.
Selvaraj
, “
Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization
,”
J. Renewable Sustain. Energy
8
(
1
),
015502
(
2016
).
15.
E. H.
Houssein
,
A. M.
Nassef
,
A.
Fathy
et al, “
Modified search and rescue optimization algorithm for identifying the optimal parameters of high efficiency triple‐junction solar cell/module
,”
Int. J. Energy Res.
46
(
10
),
13961
13985
(
2022
).
16.
A.
Fathy
,
M.
Abd Elaziz
,
E. T.
Sayed
et al, “
Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm
,”
Energy
188
,
116025
(
2019
).
17.
M. A.
El‐Dabah
,
R. A.
El‐Sehiemy
,
M.
Becherif
et al, “
Parameter estimation of triple diode photovoltaic model using an artificial ecosystem‐based optimizer
,”
Int. Trans. Electr. Energy Syst.
31
(
11
),
e13043
(
2021
).
18.
A.
Jain
and
A.
Kapoor
, “
Exact analytical solutions of the parameters of real solar cells using Lambert W-function
,”
Sol. Energy Mater. Sol. Cells
81
(
2
),
269
277
(
2004
).
19.
J.
Cubas
,
S.
Pindado
, and
C.
De Manuel
, “
Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert W-function
,”
Energies
7
(
7
),
4098
4115
(
2014
).
20.
C. H.
Belgacem
and
A. A.
El-Amine
, “
Parameters extraction of the Au/SnO2-Si(n)/Al p-n junction solar cell using Lambert W function
,”
Silicon
7
,
279
282
(
2015
).
21.
S.
Suckow
,
T. M.
Pletzer
, and
H.
Kurz
, “
Fast and reliable calculation of the two‐diode model without simplifications
,”
Prog. Photovoltaics: Res. Appl.
22
(
4
),
494
501
(
2014
).
22.
D. M.
Tex
,
M.
Imaizumi
,
H.
Akiyama
et al, “
Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells
,”
Sci. Rep.
8
,
38297
(
2016
).
23.
D.
Alonso-Álvarez
et al, “
Solcore: A multi-scale, Python-based library for modelling solar cells and semiconductor materials
,”
J. Comput. Electron.
17
,
1099
1123
(
2018
).
24.
J. A.
Nelson
,
The Physics of Solar Cells
(
World Scientific Publishing Company
,
2003
).
25.
J.
Nelson
,
J.
Barnes
,
N.
Ekins-Daukes
et al, “
Observation of suppressed radiative recombination in single quantum well p-i-n photodiodes
,”
J. Appl. Phys.
82
,
6240
(
1997
).
26.
S.
Adachi
,
Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors
(
John Wiley & Sons
,
2009
).
You do not currently have access to this content.