Particle-laden flows in solar photovoltaic (PV) systems are inevitable, where wind-swept debris in open environments are carried by high winds and turbulence, coating panel surfaces or damaging structures. Particle deposition, or soiling, is a well-known issue for large-scale plants which rely on uninhibited solar rays for optimal production. But understanding the mechanisms leading to soiling requires a physical and fluid dynamics-centered focus, since turbulence dominates PV panel wakes and is also known to alter particle concentration and trajectories. This study presents an experimental campaign toward consequences of particle-laden flow between two model PV panels using time-resolved particle image velocimetry. The model array was subjected to varied particle volume fractions, including a tracer particle case and a water droplet case. Characterization of mean velocity, turbulence statistics, and mean kinetic energy within the single phase and, separately, particle phase flows showed modified features due to particle inertia. Images captured at a frequency of 1 kHz in the near wake of the upstream panel allow for a first experimental look at vorticity and convective velocity of vortex structures for single-phase and particle-phase flows which are crucial to debris transport and soiling in PV environments.

1.
B. J.
Stanislawski
,
T.
Harman
,
T. J.
Silverman
,
R. B.
Cal
, and
M.
Calaf
, “
Row spacing as a controller of solar module temperature and power output in solar farms
,”
J. Renewable Sustainable Energy
14
,
063702
(
2022
).
2.
J.
Janiere Silva de Souza
,
P. C.
Marques de Carvalho
, and
G. C.
Barroso
, “
Analysis of the characteristics and effects of soiling natural accumulation on photovoltaic systems: A systematic review of the literature
,”
J. Sol. Energy Eng.
145
,
040801
(
2022
).
3.
D. C.
Miller
,
M. T.
Muller
, and
L. J.
Simpson
, “
Review of artificial abrasion test methods for PV module technology
,”
Report No. NREL/TP-5J00-66334
(
NREL
,
2016
).
4.
F. M.
Zaihidee
,
S.
Mekhilef
,
M.
Seyedmahmoudian
, and
B.
Horan
, “
Dust as an unalterable deteriorative factor affecting PV panel's efficiency: Why and how
,”
Renewable Sustainable Energy Rev.
65
,
1267
1278
(
2016
).
5.
S.
Said
, “
Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors
,”
Appl. Energy
37
,
73
84
(
1990
).
6.
J.
Thornton
, “
The effect of sandstorms on PV arrays and components
,” in
Solar World Congress
(
National Renewable Energy Laboratory
,
1992
), NREL/TP-411-4787, pp.
13
18
.
7.
H.
Moutinho
,
C.-S.
Jiang
,
B.
To
,
C.
Perkins
,
M.
Muller
,
M.
Al-Jassim
, and
L.
Simpson
, “
Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size
,”
Sol. Energy Mater. Sol. Cells
172
,
145
153
(
2017
).
8.
S.
Rafkin
,
B.
Jemmett-Smith
,
L.
Fenton
,
R.
Lorenz
,
T.
Takemi
,
J.
Ito
, and
D.
Tyler
, “
Dust devil formation
,”
Space Sci. Rev.
203
,
183
207
(
2016
).
9.
G.
Vedulla
,
A.
Geetha
, and
R.
Senthil
, “
Review of strategies to mitigate dust deposition on solar photovoltaic systems
,”
Energies
16
,
109
(
2022
).
10.
A.
Glick
,
S. E.
Smith
,
N.
Ali
,
J.
Bossuyt
,
G.
Recktenwald
,
M.
Calaf
, and
R. B.
Cal
, “
Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms
,”
Sol. Energy
207
,
173
182
(
2020a
).
11.
M.
Böhm
,
J. J.
Finnigan
,
M. R.
Raupach
, and
D.
Hughes
, “
Turbulence structure within and above a canopy of bluff elements
,”
Boundary-Layer Meteorol.
146
,
393
419
(
2013
).
12.
A.
Glick
,
N.
Ali
,
J.
Bossuyt
,
M.
Calaf
, and
R. B.
Cal
, “
Utility-scale solar PV performance enhancements through system-level modifications
,”
Sci. Rep.
10
,
10505
(
2020b
).
13.
H.
Zheng
,
Z.
Zhang
,
Z.
Fan
,
X.
Sun
,
S.
Huo
, and
R.
Rui
, “
Numerical investigation on the distribution characteristics of dust deposition on solar photovoltaic modules
,”
J. Renewable Sustainable Energy
15
,
013701
(
2023
).
14.
H.
Lu
and
L.
Zhang
, “
Influences of dust deposition on ground-mounted solar photovoltaic arrays: A CFD simulation study
,”
Renewable Energy
135
,
21
31
(
2019
).
15.
E. A.
Kaiss
and
N. M.
Hassan
, “
Numerical modeling of dust deposition rate on ground-mounted solar photovoltaic panels
,”
J. Sol. Energy Eng.
145
,
041003
(
2023
).
16.
M.
Saidan
,
A. G.
Albaali
,
E.
Alasis
, and
J. K.
Kaldellis
, “
Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment
,”
Renewable Energy
92
,
499
505
(
2016
).
17.
G. S.
Wood
,
R. O.
Denoon
, and
K. C.
Kwok
, “
Wind loads on industrial solar panel arrays and supporting roof structure
,”
Wind Struct.
4
,
481
494
(
2001
).
18.
M. S.
El-Shobokshy
and
F. M.
Hussein
, “
Effect of dust with different physical properties on the performance of photovoltaic cells
,”
Sol. Energy
51
,
505
511
(
1993
).
19.
M.
Valerino
,
M.
Bergin
,
C.
Ghoroi
,
A.
Ratnaparkhi
, and
G. P.
Smestad
, “
Low-cost solar PV soiling sensor validation and size resolved soiling impacts: A comprehensive field study in Western India
,”
Sol. Energy
204
,
307
315
(
2020
).
20.
M.
Obligado
,
A.
Cartellier
, and
M.
Bourgoin
, “
Experimental detection of superclusters of water droplets in homogeneous isotropic turbulence
,”
Europhys. Lett.
112
,
54004
(
2015
).
21.
M. R.
Maxey
, “
The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields
,”
J. Fluid Mech.
174
,
441
465
(
1987
).
22.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Annu. Rev. Fluid Mech.
41
,
375
404
(
2009
).
23.
J.
Eaton
and
J.
Fessler
, “
Preferential concentration of particles by turbulence
,”
Int. J. Multiphase Flow
20
,
169
209
(
1994
).
24.
S.
Goto
and
J. C.
Vassilicos
, “
Sweep-stick mechanism of heavy particle clustering in fluid turbulence
,”
Phys. Rev. Lett.
100
,
054503
(
2008
).
25.
USDA
, “
Engineering classification of earth materials
,” in
National Engineering Handbook
, Part 631 Geology (
U.S. Department of Agriculture Natural Resources Conservation Service
,
2012
).
26.
R.
Chein
and
J.
Chung
, “
Particle dynamics in a gas-particle flow over normal and inclined plates
,”
Chem. Eng. Sci.
43
,
1621
1636
(
1988
).
27.
H.
Homann
and
J.
Bec
, “
Concentrations of inertial particles in the turbulent wake of an immobile sphere
,”
Phys. Fluids
27
,
053301
(
2015
).
28.
S. E.
Smith
,
H.
Djeridi
,
M.
Calaf
,
R. B.
Cal
, and
M.
Obligado
, “
Particle transport-driven flow dynamics and heat transfer modulation in solar photovoltaic modules: Implications on soiling
,”
Sol. Energy
265
,
112084
(
2023
).
29.
J.
Bec
,
L.
Biferale
,
M.
Cencini
,
A.
Lanotte
,
S.
Musacchio
, and
F.
Toschi
, “
Heavy particle concentration in turbulence at dissipative and inertial scales
,”
Phys. Rev. Lett.
98
,
084502
(
2007
).
30.
R.
Monchaux
,
M.
Bourgoin
, and
A.
Cartellier
, “
Analyzing preferential concentration and clustering of inertial particles in turbulence
,”
Int. J. Multiphase Flow
40
,
1
18
(
2012
).
31.
H.
Lu
and
W.
Zhao
, “
Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system
,”
Appl. Energy
220
,
514
526
(
2018
).
32.
R.
Volk
,
E.
Calzavarini
,
G.
Verhille
,
D.
Lohse
,
N.
Mordant
,
J.-F.
Pinton
, and
F.
Toschi
, “
Acceleration of heavy and light particles in turbulence: Comparison between experiments and direct numerical simulations
,”
Physica D
237
,
2084
2089
(
2008
).
33.
A.
Ferran
,
N.
Machicoane
,
A.
Aliseda
, and
M.
Obligado
, “
An experimental study on the settling velocity of inertial particles in different homogeneous isotropic turbulent flows
,”
J. Fluid Mech.
970
,
A23
(
2023
).
34.
D. O.
Mora
,
E.
Muñiz Pladellorens
,
P.
Riera Turró
,
M.
Lagauzere
, and
M.
Obligado
, “
Energy cascades in active-grid-generated turbulent flows
,”
Phys. Rev. Fluids
4
,
104601
(
2019
).
35.
R. B.
Stull
, “
Turbulence kinetic energy, stability and scaling
,” in
An Introduction to Boundary Layer Meteorology
(
Springer Netherlands
,
Dordrecht
,
1988
), Chap. 5, pp.
151
195
.
36.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
37.
S. B.
Pope
, “
The equations of fluid motion
,” in
Turbulent Flows
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2015
), Chap. 2, pp.
22
32
.
38.
N.
Furuichi
,
T.
Hachiga
, and
M.
Kumada
, “
An experimental investigation of a large-scale structure of a two-dimensional backward-facing step by using advanced multi-point LDV
,”
Exp. Fluids
36
,
274
281
(
2004
).
39.
R.
Clift
,
J.
Grace
, and
M. E.
Weber
,
Bubble, Drops, and Particles
(
Academic Press
,
1978
).
40.
A.
Aliseda
,
A.
Cartellier
,
F.
Hainaux
, and
J. C.
Lasheras
, “
Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
468
,
77
105
(
2002
).
41.
S.
Sumbekova
,
A.
Cartellier
,
A.
Aliseda
, and
M.
Bourgoin
, “
Preferential concentration of inertial sub-Kolmogorov particles: The roles of mass loading of particles, Stokes and Reynolds numbers
,”
Phys. Rev. Fluids
2
,
024302
(
2017
).
42.
J. M.
Chen
and
Y.
Fang
, “
Strouhal numbers of inclined flat plates
,”
J. Wind Eng. Ind. Aerodyn.
61
,
99
112
(
1996
).
You do not currently have access to this content.