Large-eddy simulations (LES) are performed on the flow over a wind farm sited behind an abrupt rough-to-smooth surface roughness jump. The change in surface roughness affects both the first-order and second-order turbulent statistics. The usual deficit, i.e., the difference between the velocities upstream of the entire wind farm and downstream of a turbine, attains negative values close to the ground, which makes it difficult for modeling within the usual Gaussian radial-shape framework. A different definition, i.e., the difference in velocity at the same location with and without a turbine on a heterogeneous surface, is always positive and is amenable to Gaussian shape-based modeling. For the setup considered here, wind farms sited downstream of a surface roughness jump produce more power than a wind farm sited on a homogeneously rough surface. This increase is primarily because of the larger power generated by the downstream turbines and only slightly due to the increased power of the first-row turbine. The farm performance is affected by the distance between the abrupt change in surface roughness and the position of the first row of turbines. The wind farm performance is also dependent on the aerodynamic roughness upstream of the surface roughness jump. Two single-turbine analytical models and three wake-merging strategies are evaluated for their ability to predict the velocity deficits. A corrected form of the standard Gaussian model with a recently proposed wake-merging methodology, applicable for a varying background field, is found to be insensitive to the tunable model parameter and is consistently in line with the LES results.

1.
Abkar
,
M.
and
Porté-Agel
,
F.
, “
A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness transitions
,”
J. Turbul.
13
,
N23
(
2012
).
2.
Bastankhah
,
M.
and
Porté-Agel
,
F.
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
3.
Bastankhah
,
M.
and
Porté-Agel
,
F.
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
4.
Bastankhah
,
M.
,
Welch
,
B. L.
,
Martínez-Tossas
,
L. A.
,
King
,
J.
, and
Fleming
,
P.
, “
Analytical solution for the cumulative wake of wind turbines in wind farms
,”
J. Fluid Mech.
911
,
A53
(
2021
).
5.
Bou-Zeid
,
E.
,
Meneveau
,
C.
, and
Parlange
,
M. B.
, “
Large-eddy simulation of neutral atmospheric boundary-layer flow over heterogeneous surfaces: Blending height and effective surface roughness
,”
Water Resour. Res.
40
,
W02505
, https://doi.org/10.1029/TR039i006p01048 (
2004
).
6.
Bou-Zeid
,
E.
,
Anderson
,
W.
,
Katul
,
G. G.
, and
Mahrt
,
L.
, “
The persistent challenge of surface heterogeneity in boundary-layer meteorology: A review
,”
Boundary-Layer Meteorol.
177
,
227
245
(
2020
).
7.
Bradley
,
E. F.
, “
A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness
,”
Q. J. R. Meteorol. Soc.
94
,
361
379
(
1968
).
8.
Chamorro
,
L. P.
and
Porté-Agel
,
F.
, “
A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects
,”
Boundary-Layer Meteorol.
132
,
129
149
(
2009
).
9.
Chamorro
,
L. P.
and
Porté-Agel
,
F.
, “
Velocity and surface shear stress distributions behind a rough-to-smooth surface transition: A simple new model
,”
Boundary-Layer Meteorol.
130
,
29
41
(
2009
).
10.
Chamorro
,
L. P.
and
Porte-Agel
,
F.
, “
Turbulent flow inside and above a wind farm: A wind-tunnel study
,”
Energies
4
(
11
),
1916
1936
(
2011
).
11.
Cheng
,
W.-C.
and
Porté-Agel
,
F.
, “
A simple physically-based model for wind-turbine wake growth in a turbulent boundary layer
,”
Boundary-Layer Meteorol.
169
,
1
10
(
2018
).
12.
Du
,
B.
,
Ge
,
M.
, and
Liu
,
Y.
, “
A physical wind-turbine wake growth model under different stratified atmospheric conditions
,”
Wind Energy
25
(
10
),
1812
1836
(
2022
).
13.
Elliott
,
W. P.
, “
The growth of the atmospheric internal boundary layer
,”
Eos, Trans. Am. Geophys. Union
39
,
1048
1054
(
1958
).
14.
Ghaisas
,
N. S.
, “
A predictive analytical model for surface shear stresses and velocity profiles behind a surface roughness jump
,”
Boundary-Layer Meteorol.
176
,
349
368
(
2020
).
15.
Ghaisas
,
N. S.
,
Ghate
,
A.
, and
Lele
,
S. K.
, “
Effect of tip spacing, thrust coefficient and turbine spacing in multi-rotor wind turbines and farms
,”
Wind Energy Sci.
5
,
51
72
(
2020
).
16.
Ghate
,
A. S.
and
Lele
,
S. K.
, “
Subfilter-scale enrichment of planetary boundary layer large eddy simulations using discrete Fourier-Gabor modes
,”
J. Fluid Mech.
819
,
494
539
(
2017
).
17.
Ghate
,
A. S.
,
Ghaisas
,
N. S.
,
Lele
,
S. K.
, and
Towne
,
A.
, “
Interaction of small scale homogeneous isotropic turbulence with an actuator disk
,” AIAA Paper No. 2018-0753,
2018
.
18.
Goit
,
J. P.
and
Önder
,
A.
, “
The effect of coastal terrain on nearshore offshore wind farms: A large-eddy simulation study
,”
J. Renewable Sustainable Energy
14
,
043304
(
2022
).
19.
Howland
,
M. F.
,
González
,
C. M.
,
Martínez
,
J. J. P.
,
Quesada
,
J. B.
,
Larranaga
,
F. P.
,
Yadav
,
N. K.
,
Chawla
,
J. S.
, and
Dabiri
,
J. O.
, “
Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment
,”
J. Renewable Sustainable Energy
12
(
6
),
063307
(
2020
).
20.
Howland
,
M. F.
,
Lele
,
S. K.
, and
Dabiri
,
J. O.
, “
Wind farm power optimization through wake steering
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
29
),
14495
14500
(
2019
).
21.
Ishihara
,
T.
and
Qian
,
G. W.
, “
A new Gaussian-based analytical wake model for wind turbines considering ambient turbulence intensities and thrust coefficient effects
,”
J. Wind Eng. Ind. Aerodyn.
177
,
275
292
(
2018
).
22.
Jimenez
,
A.
,
Crespo
,
A.
,
Migoya
,
E.
, and
García
,
J.
, “
Advances in large-eddy simulation of a wind turbine wake
,”
J. Phys.: Conf. Ser.
75
,
012041
(
2007
).
23.
Katic
,
I.
,
Højstrup
,
J.
, and
Jensen
,
N. O.
, “
A simple model for cluster efficiency
,” in
European Wind Energy Association Conference and Exhibition
(
A. Raguzzi
,
Rome
,
Italy
,
1986
), Vol.
1
, pp.
407
410
.
24.
Kethavath
,
N. N.
,
Mondal
,
K.
, and
Ghaisas
,
N. S.
, “
Large-eddy simulation and analytical modeling study of the wake of a wind turbine behind an abrupt rough-to-smooth surface roughness transition
,”
Phys. Fluids
34
(
12
),
125117
(
2022
).
25.
Lanzilao
,
L.
and
Meyers
,
J.
, “
A new wake-merging method for wind-farm power prediction in the presence of heterogeneous background velocity fields
,”
Wind Energy
25
(
2
),
237
259
(
2022
).
26.
Lissaman
,
P. B. S.
, “
Energy effectiveness of arbitrary arrays of wind turbines
,”
J. Energy
3
(
6
),
323
328
(
1979
).
27.
Mondal
,
K.
,
Kethavath
,
N. N.
,
Abhinay
,
K.
, and
Ghaisas
,
N. S.
, “
Large eddy simulation study of atmospheric boundary layer flow over an abrupt rough-to-smooth surface roughness transition
,”
Boundary-Layer Meteorol.
188
,
229
257
(
2023
).
28.
Mulhearn
,
P. J.
, “
Relations between surface fluxes and mean profiles of velocity, temperature and concentration, downwind of a change in surface roughness
,”
Q. J. R. Meteorol. Soc.
103
,
785
802
(
1977
).
29.
Niayifar
,
A.
and
Porté-Agel
,
F.
, “
Analytical modeling of wind farms: A new approach for power prediction
,”
Energies
9
(
9
),
741
(
2016
).
30.
Panofsky
,
H. A.
and
Townsend
,
A. A.
, “
Change of terrain roughness and the wind profile
,”
Q. J. R. Meteorol. Soc.
90
,
147
155
(
1964
).
31.
Peña
,
A.
,
Schaldemose Hansen
,
K.
,
Ott
,
S.
, and
van der Laan
,
M. P.
, “
On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm
,”
Wind Energy Sci.
3
(
1
),
191
202
(
2018
).
32.
Porté-Agel
,
F.
,
Bastankhah
,
M.
, and
Shamsoddin
,
S.
, “
Wind turbine and wind farm flows: A review
,”
Boundary-Layer Meteorol.
174
,
1
59
(
2020
).
33.
Rao
,
K. S.
,
Wyngaard
,
J. C.
, and
Coté
,
O. R.
, “
The structure of the two dimensional internal boundary layer over a sudden change of surface roughness
,”
J. Atmos. Sci.
31
,
738
746
(
1974
).
34.
Roy
,
C. J.
, “
Grid convergence error analysis for mixed-order numerical schemes
,”
AIAA J.
41
(
4
),
595
604
(
2003
).
35.
Rozema
,
W.
,
Bae
,
H. J.
,
Moin
,
P.
, and
Verstappen
,
R.
, “
Minimum-dissipation models for large-eddy simulation
,”
Phys. Fluids
27
,
085107
(
2015
).
36.
Schulz-Stellenfleth
,
J.
,
Emeis
,
S.
,
Dörenkämper
,
M.
,
Bange
,
J.
,
Cañadillas
,
B.
,
Neumann
,
T.
,
Schneemann
,
J.
,
Weber
,
I.
,
Zum Berge
,
K.
,
Platis
,
A.
et al, “
Coastal impacts on offshore wind farms–A review focussing on the German Bight area
,”
Meteorol. Z.
31
,
289
315
(
2022
).
37.
Shir
,
C. C.
, “
A numerical computation of air flow over a sudden change of surface roughness
,”
J. Atmos. Sci.
29
,
304
310
(
1972
).
38.
Stevens
,
R. J. A. M.
and
Meneveau
,
C.
, “
Flow structure and turbulence in wind farms
,”
Annu. Rev. Fluid Mech.
49
,
311
339
(
2017
).
39.
Stevens
,
R. J.
,
Martínez-Tossas
,
L. A.
, and
Charles
,
M.
, “
Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments
,”
Renewable Energy
116
,
470
478
(
2018
).
40.
Stevens
,
R. J.
,
Gayme
,
D. F.
, and
Meneveau
,
C.
, “
Coupled wake boundary layer model of wind-farms
,”
J. Renewable Sustainable Energy
7
(
2
),
023115
(
2015
).
41.
Subramaniam
,
A.
,
Ghate
,
A.
,
Ghaisas
,
N. S.
,
Howland
,
M. F.
et al, PadeOps GitHub Repository, see https://github.com/FPAL-Stanford-University/PadOps/tree/igridSGS (last accessed August 5, 2021).
42.
Teng
,
J.
and
Markfort
,
C. D.
, “
A calibration procedure for an analytical wake model using wind farm operational data
,”
Energies
13
(
14
),
3537
(
2020
).
43.
Troen
,
I.
and
Lundtang Petersen
,
E.
, European Wind Atlas,
1989
, see https://backend.orbit.dtu.dk/ws/portalfiles/portal/112135732/European_Wind_Atlas.pdf.
44.
Vahidi
,
D.
and
Porté-Agel
,
F.
, “
A physics-based model for wind turbine wake expansion in the atmospheric boundary layer
,”
J. Fluid Mech.
943
,
A49
(
2022
).
45.
Van Der Laan
,
M. P.
,
Pena
,
A.
,
Volker
,
P.
,
Hansen
,
K. S.
,
Sørensen
,
N. N.
,
Ott
,
S.
, and
Hasager
,
C. B.
, “
Challenges in simulating coastal effects on an offshore wind farm
,”
J. Phys.: Conf. Ser.
854
,
012046
(
2017
).
46.
van der Laan
,
M. P.
and
Abkar
,
M.
, “
Improved energy production multi-rotor wind farms
,”
J. Phys.: Conf. Ser.
1256
,
012011
(
2019
).
47.
Voutsinas
,
S.
,
Rados
,
K.
, and
Zervos
,
A.
, “
On the analysis of wake effects in wind parks
,”
Wind Eng.
14
(
4
),
204
219
(
1990
).
48.
Wu
,
Y. T.
and
Porté-Agel
,
F.
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
,”
Boundary-Layer Meteorol.
138
(
3
),
345
366
(
2011
).
You do not currently have access to this content.