There has been an increase in recognition of the important role that the boundary layer turbulent flow structure has on wake recovery and concomitant wind farm efficiency. Most research thus far has focused on onshore wind farms, in which the ground surface is static. With the expected growth of offshore wind farms, there is increased interest in turbulent flow structures above wavy, moving surfaces and their effects on offshore wind farms. In this study, experiments are performed to analyze the turbulent structure above the waves in the wake of a fixed-bottom model wind farm, with special emphasis on the conditional averaged Reynolds stresses, using a quadrant analysis. Phase-averaged profiles show a correlation between the Reynolds shear stresses and the curvature of the waves. Using a quadrant analysis, Reynolds stress dependence on the wave phase is observed in the phase-dependent vertical position of the turbulence events. This trend is primarily seen in quadrants 1 and 3 (correlated outward and inward interactions). Quantification of the correlation between the Reynolds shear stress events and the surface waves provides insight into the turbulent flow mechanisms that influence wake recovery throughout the wake region and should be taken into consideration in wind turbine operation and placement.

1.
J.-T.
Horn
and
B. J.
Leira
, “
Fatigue reliability assessment of offshore wind turbines with stochastic availability
,”
Reliab. Eng. Syst. Saf.
191
,
106550
(
2019
).
2.
A. D.
Jenkins
,
M. B.
Paskyabi
,
I.
Fer
,
A.
Gupta
, and
M.
Adakudlu
, “
Modelling the effect of ocean waves on the atmospheric and ocean boundary layers
,”
Energy Procedia
24
,
166
175
(
2012
).
3.
Y.
Wang
,
W.
Miao
,
Q.
Ding
,
C.
Li
, and
B.
Xiang
, “
Numerical investigations on control strategies of wake deviation for large wind turbines in an offshore wind farm
,”
Ocean Eng.
173
,
794
801
(
2019
).
4.
J.
Bossuyt
,
M. F.
Howland
,
C.
Meneveau
, and
J.
Meyers
, “
Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel
,”
Exp. Fluids
58
,
1
17
(
2017
).
5.
O.
Ferčák
,
J.
Bossuyt
,
N.
Ali
, and
R. B.
Cal
, “
Decoupling wind–wave–wake interactions in a fixed-bottom offshore wind turbine
,”
Appl. Energy
309
,
118358
(
2022
).
6.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Effect of downwind swells on offshore wind energy harvesting–a large-eddy simulation study
,”
Renewable Energy
70
,
11
23
(
2014
).
7.
P.
McKay
,
R.
Carriveau
,
D. S.
Ting
, and
T.
Newson
, “
Turbine wake dynamics
,” in
Advances in Wind Power
(
IntechOpen
,
2012
).
8.
G.
Marmidis
,
S.
Lazarou
, and
E.
Pyrgioti
, “
Optimal placement of wind turbines in a wind park using Monte Carlo simulation
,”
Renewable energy
33
,
1455
1460
(
2008
).
9.
Y.
Wu
and
K.
Christensen
, “
Outer-layer similarity in the presence of a practical rough-wall topography
,”
Phys. Fluids
19
,
085108
(
2007
).
10.
K. P.
Nolan
and
T. A.
Zaki
, “
Conditional sampling of transitional boundary layers in pressure gradients
,”
J. Fluid Mech.
728
,
306
339
(
2013
).
11.
M. P.
Buckley
and
F.
Veron
, “
The turbulent airflow over wind generated surface waves
,”
Eur. J. Mech. B
73
,
132
143
(
2019
).
12.
R.
Antonia
and
L.
Browne
, “
Quadrant analysis in the turbulent far-wake of a cylinder
,”
Fluid Dyn. Res.
2
,
3
(
1987
).
13.
G.
Fabris
, “
Conditional sampling study of the turbulent wake of a cylinder. Part 1
,”
J. Fluid Mech.
94
,
673
709
(
1979
).
14.
W.
Yue
,
C.
Meneveau
,
M. B.
Parlange
,
W.
Zhu
,
R.
Van Hout
, and
J.
Katz
, “
A comparative quadrant analysis of turbulence in a plant canopy
,”
Water Resour. Res.
43
, W05422, https://doi.org/10.1029/2006WR005583 (
2007
).
15.
W.
Zhu
,
R.
Van Hout
,
L.
Luznik
,
H.
Kang
,
J.
Katz
, and
C.
Meneveau
, “
A comparison of PIV measurements of canopy turbulence performed in the field and in a wind tunnel model
,”
Exp. Fluids
41
,
309
318
(
2006
).
16.
N.
Hamilton
,
H.
Suk Kang
,
C.
Meneveau
, and
R.
Bayoán Cal
, “
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
,”
J. Renewable Sustainable Energy
4
,
063105
(
2012
).
17.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
18.
K.
Viestenz
and
R. B.
Cal
, “
Streamwise evolution of statistical events in a model wind-turbine array
,”
Boundary-Layer Meteorol.
158
,
209
227
(
2016
).
19.
H. F.
Kadum
,
D.
Knowles
, and
R. B.
Cal
, “
Quantification of preferential contribution of Reynolds shear stresses and flux of mean kinetic energy via conditional sampling in a wind turbine array
,”
J. Fluids Eng.
141
,
021201
(
2019
).
20.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Dynamic modelling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield
,”
J. Fluid Mech.
726
,
62
99
(
2013
).
21.
S.
Xiao
and
D.
Yang
, “
Large-eddy simulation-based study of effect of swell-induced pitch motion on wake-flow statistics and power extraction of offshore wind turbines
,”
Energies
12
,
1246
(
2019
).
22.
G.
Deskos
,
S.
Ananthan
, and
M. A.
Sprague
, “
Direct numerical simulations of turbulent flow over misaligned traveling waves
,”
Int. J. Heat Fluid Flow
97
,
109029
(
2022
).
23.
M. P.
Buckley
and
F.
Veron
, “
Airflow measurements at a wavy air–water interface using PIV and LIF
,”
Exp. Fluids
58
,
1
20
(
2017
).
24.
J. M.
Wallace
,
H.
Eckelmann
, and
R. S.
Brodkey
, “
The wall region in turbulent shear flow
,”
J. Fluid Mech.
54
,
39
48
(
1972
).
25.
Y.
Odemark
and
J. H.
Fransson
, “
The stability and development of tip and root vortices behind a model wind turbine
,”
Exp. Fluids
54
,
1
16
(
2013
).
26.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
27.
R.
Barthelmie
,
O. F.
Hansen
,
K.
Enevoldsen
,
J.
Højstrup
,
S.
Frandsen
,
S.
Pryor
,
S.
Larsen
,
M.
Motta
, and
P.
Sanderhoff
, “
Ten years of meteorological measurements for offshore wind farms
,”
J. Sol. Energy Eng.
127
,
170
176
(
2005
).
28.
M.
Türk
and
S.
Emeis
, “
The dependence of offshore turbulence intensity on wind speed
,”
J. Wind Eng. Ind. Aerodyn.
98
,
466
471
(
2010
).
29.
J.
Counihan
, “
Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–1972
,”
Atmos. Environ. (1967)
9
,
871
905
(
1975
).
30.
O.
Ferčák
(
2024
). “Experimental particle image velocimetry (PIV) data for Mouchref 2024,”
Github
. https://github.com/ofercak/turbulence-quantification-of-reynolds-shear-stress-wave-phase-dependence
31.
Z.
Yang
,
P.
Sarkar
, and
H.
Hu
, “
Visualization of the tip vortices in a wind turbine wake
,”
J. Visualization
15
,
39
44
(
2012
).
32.
S. J.
Andersen
,
J. N.
Sørensen
, and
R. F.
Mikkelsen
, “
Turbulence and entrainment length scales in large wind farms
,”
Philos. Trans. R. Soc. A
375
,
20160107
(
2017
).
33.
M.
Raupach
, “
Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers
,”
J. Fluid Mech.
108
,
363
382
(
1981
).
34.
D.
Poggi
,
G.
Katul
, and
J.
Albertson
, “
Momentum transfer and turbulent kinetic energy budgets within a dense model canopy
,”
Boundary-Layer Meteorol.
111
,
589
614
(
2004
).
35.
K.
Thomsen
and
P.
Sørensen
, “
Fatigue loads for wind turbines operating in wakes
,”
J. Wind Eng. Ind. Aerodyn.
80
,
121
136
(
1999
).
You do not currently have access to this content.