Biogas is a product composed of a mixture of gases resulting from the biological decomposition of organic material, consisting primarily of methane gas and carbon dioxide, besides smaller amounts of other gases. The current study aims to comprehensively analyze waste-based biogas production to ensure sustainability in the biofuel production process. An advanced systematic bibliometric analysis using keywords, co-citations, and bibliographic coupling analysis was performed on 641 peer-reviewed articles from Web of Science to conclude this goal further. This analysis covers the period from 2000 to 2022, a little more than 20 years. The methodology used reveals several themes that have been identified and addressed in the articles: (1) the importance of the topic in academia by country in which they were analyzed; (2) sectors contributing to biofuel production; (3) equipment used in biofuel production; (4) the most cited waste sources in the database; (5) application purpose of biogas; (6) relevance of other energy sources; (7) areas of interest where biofuels are used; and (8) a comparison between the energy production capacity and the number of publications on the topic by country. Furthermore, the potentials, limitations, perspectives, and future trends highlighted to improve the production process are also considered. Therefore, the conclusion is that organic waste can be used in the sustainable production of goods with added value for society.

1.
Abdelsalam
,
E. M.
,
Samer
,
M.
,
Amer
,
M. A.
, and
Amer
,
B. M. A.
, “
Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes
,”
Environ. Dev. Sustainable
23
,
8746
8757
(
2021
).
2.
Abdelwahab
,
T. A. M.
and
Fodah
,
A. E. M.
, “
Utilization of nanoparticles for biogas production focusing on process stability and effluent quality
,”
SN Appl. Sci.
4
,
332
(
2022
).
3.
Abdeshahian
,
P.
,
Lim
,
J. S.
,
Ho
,
W. S.
,
Hashim
,
H.
, and
Lee
,
C. T.
, “
Potential of biogas production from farm animal waste in Malaysia
,”
Renewable Sustainable Energy Rev.
60
,
714
723
(
2016
).
4.
Aboyade
,
A.
, “
The potential for climate change mitigation in the Nigerian solid waste disposal sector: A case study from Lagos
,” M.S. thesis (
Lund University
,
2004
).
5.
Aggarangsi
,
P.
,
Koonaphapdeelert
,
S.
,
Nitayavardhana
,
S.
, and
Moran
,
J.
, “
Biogas reactors
,” in
Biogas Technology in Southeast Asia
(
Springer
,
2023
), pp.
39
80
.
6.
Aggarwal
,
R. K.
,
Chandel
,
S. S.
,
Yadav
,
P.
, and
Khosla
,
A.
, “
Perspective of new innovative biogas technology policy implementation for sustainable development in India
,”
Energy Policy
159
,
112666
(
2021
).
7.
Agrawal
,
A. V.
,
Chaudhari
,
P. K.
, and
Ghosh
,
P.
, “
Effect of microwave treatment on maximizing biogas yield for anaerobic co-digestion of fruit and vegetable waste and anaerobic sludge
,”
Biomass Convers. Biorefin.
(published online) (
2023
).
8.
Agung Pambudi
,
N.
,
Laurensia
,
R.
,
Wijayanto
,
D. S.
,
Perdana
,
V. L.
,
Fasola
,
M.
,
Imran
,
M.
,
Saw
,
L. H.
, and
Handogo
,
R.
, “
Exergy analysis of boiler process powered by biogas fuel in ethanol production plant: A preliminary analysis
,”
Energy Procedia
142
,
216
223
(
2017
).
9.
Agustini
,
C. B.
,
da Fontoura
,
J. T.
,
Mella
,
B.
, and
Gutterres
,
M.
, “
Evaluating co-substrates to supplement biogas production from tannery solid waste treatment – cattle hair, microalgae biomass, and silicone
,”
Biofuels, Bioprod. Biorefin.
12
,
1095
1102
(
2018
).
10.
Ahmed
,
Y.
,
Yaakob
,
Z.
,
Akhtar
,
P.
, and
Sopian
,
K.
, “
Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME)
,”
Renewable Sustainable Energy Rev.
42
,
1260
1278
(
2015
).
11.
Ai
,
P.
,
Chen
,
M.
,
Ran
,
Y.
,
Jin
,
K.
,
Peng
,
J.
, and
Abomohra
,
A. E.-F.
, “
Digestate recirculation through co-digestion with rice straw: Towards high biogas production and efficient waste recycling
,”
J. Cleaner Prod.
263
,
121441
(
2020
).
12.
Ajieh
,
M. U.
,
Isagba
,
E. S.
,
Ihoeghian
,
N.
,
Edosa
,
V. I. O.
,
Amenaghawon
,
A.
,
Oshoma
,
C. E.
,
Erhunmwunse
,
N.
,
Obuekwe
,
I. S.
,
Tongo
,
I.
,
Emokaro
,
C.
, and
Ezemonye
,
L. I. N.
, “
Assessment of sociocultural acceptability of biogas from faecal waste as an alternative energy source in selected areas of Benin City, Edo State, Nigeria
,”
Environ. Dev. Sustainable
23
,
13182
13199
(
2021
).
13.
Alexander
,
S.
,
Harris
,
P.
, and
McCabe
,
B. K.
, “
Biogas in the suburbs: An untapped source of clean energy?
,”
J. Cleaner Prod.
215
,
1025
1035
(
2019
).
14.
Aljuraifani
,
A. A.
,
Berekaa
,
M. M.
, and
Ghazwani
,
A. A.
, “
Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources
,”
Microbiologyopen
8
,
e755
(
2018
).
15.
Almeida
,
F. L. C.
,
Castro
,
M. P. J.
,
Travália
,
B. M.
, and
Forte
,
M. B. S.
, “
Trends in lipase immobilization: Bibliometric review and patent analysis
,”
Process Biochem.
110
,
37
51
(
2021
).
16.
Amo-Duodu
,
G.
,
Rathilal
,
S.
,
Chollom
,
M. N.
, and
Kweinor Tetteh
,
E.
, “
Application of metallic nanoparticles for biogas enhancement using the biomethane potential test
,”
Sci. Afr.
12
,
e00728
(
2021
).
17.
Amo-Duodu
,
G.
,
Rathilal
,
S.
,
Chollom
,
M. N.
, and
Tetteh
,
E. K.
, “
Effects of synthesized AlFe2O4 and MgFe2O4 nanoparticles on biogas production from anaerobically digested sugar refinery wastewater
,”
Environ. Sci. Pollut. Res.
30
,
25613
25619
(
2023
).
18.
Andrade
,
T. A.
,
Martín
,
M.
,
Errico
,
M.
, and
Christensen
,
K. V.
, “
Biodiesel production catalyzed by liquid and immobilized enzymes: Optimization and economic analysis
,”
Chem. Eng. Res. Des.
141
,
1
14
(
2019
).
19.
Ankur
,
C.
,
Ashish
,
K.
,
Tanvi
,
G.
,
Kumar
,
S. R.
,
Gorky
, and
Sudhir
,
K.
, “
Sustainable production of biogas in large bioreactor under psychrophilic and mesophilic conditions
,”
J. Environ. Eng.
146
,
04019117
(
2020
).
20.
Arias
,
A.
,
Behera
,
C. R.
,
Feijoo
,
G.
,
Sin
,
G.
, and
Moreira
,
M. T.
, “
Unravelling the environmental and economic impacts of innovative technologies for the enhancement of biogas production and sludge management in wastewater systems
,”
J. Environ. Manage.
270
,
110965
(
2020
).
21.
Arnold
,
M.
and
Kajolinna
,
T.
, “
Development of on-line measurement techniques for siloxanes and other trace compounds in biogas
,”
Waste Manage.
30
,
1011
1017
(
2010
).
22.
Arthur
,
R.
,
Baidoo
,
M. F.
,
Osei
,
G.
,
Boamah
,
L.
, and
Kwofie
,
S.
, “
Evaluation of potential feedstocks for sustainable biogas production in Ghana: Quantification, energy generation, and CO2 abatement
,”
Cogent Environ. Sci.
6
,
1868162
(
2020
).
23.
Assunção
,
L. R. C.
,
Mendes
,
P. A. S.
,
Matos
,
S.
, and
Borschiver
,
S.
, “
Technology roadmap of renewable natural gas: Identifying trends for research and development to improve biogas upgrading technology management
,”
Appl. Energy
292
,
116849
(
2021
).
24.
Ayodele
,
T. R.
,
Ogunjuyigbe
,
A. S. O.
, and
Alao
,
M. A.
, “
Economic and environmental assessment of electricity generation using biogas from organic fraction of municipal solid waste for the city of Ibadan, Nigeria
,”
J. Cleaner Prod.
203
,
718
735
(
2018
).
25.
Aziz
,
N. I. H. A.
and
Hanafiah
,
M. M.
, “
Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent
,”
Renewable Energy
145
,
847
857
(
2020
).
26.
Aziz
,
N. I. H. A.
,
Hanafiah
,
M. M.
, and
Gheewala
,
S. H.
, “
A review on life cycle assessment of biogas production: Challenges and future perspectives in Malaysia
,”
Biomass Bioenergy
122
,
361
374
(
2019
).
27.
Babič
,
J.
,
Likozar
,
B.
, and
Pavko
,
A.
, “
Optimization of ligninolytic enzyme activity and production rate with Ceriporiopsis subvermispora for application in bioremediation by varying submerged media composition and growth immobilization support
,”
Int. J. Mol. Sci.
13
,
11365
11384
(
2012
).
28.
Bakkaloglu
,
S.
,
Lowry
,
D.
,
Fisher
,
R. E.
,
France
,
J. L.
,
Brunner
,
D.
,
Chen
,
H.
, and
Nisbet
,
E. G.
, “
Quantification of methane emissions from UK biogas plants
,”
Waste Manage.
124
,
82
93
(
2021
).
29.
Bartoli
,
A.
,
Ben Fradj
,
N.
,
Gałczyńska
,
M.
,
Jędrejek
,
A.
,
Rozakis
,
S.
, and
Shu
,
K.
, “
Spatial economic modeling of the waste-driven agricultural biogas in Lubelskie region, Poland
,”
Environ. Clim. Technol.
24
,
545
559
(
2020
).
30.
Becker
,
C. M.
,
Marder
,
M.
,
Junges
,
E.
, and
Konrad
,
O.
, “
Technologies for biogas desulfurization - An overview of recent studies
,”
Renewable Sustainable Energy Rev.
159
,
112205
(
2022
).
31.
Bedoić
,
R.
,
Dorotić
,
H.
,
Schneider
,
D. R.
,
Čuček
,
L.
,
Ćosić
,
B.
,
Pukšec
,
T.
, and
Duić
,
N.
, “
Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant
,”
Renewable Energy
173
,
12
23
(
2021
).
32.
Berglund
,
M.
and
Börjesson
,
P.
, “
Assessment of energy performance in the life-cycle of biogas production
,”
Biomass Bioenergy
30
,
254
266
(
2006
).
33.
Bermann
,
C.
, “
Crise ambiental e as energias renováveis
,”
Cienc. Cult.
60
,
20
29
(
2008
).
34.
Bernat
,
K.
,
Kulikowska
,
D.
,
Wojnowska-Baryła
,
I.
,
Zaborowska
,
M.
, and
Pasieczna-Patkowska
,
S.
, “
Thermophilic and mesophilic biogas production from PLA-based materials: Possibilities and limitations
,”
Waste Manage.
119
,
295
305
(
2021
).
35.
Boldrin
,
A.
,
Baral
,
K. R.
,
Fitamo
,
T.
,
Vazifehkhoran
,
A. H.
,
Jensen
,
I. G.
,
Kjaergaard
,
I.
,
Lyng
,
K.-A.
,
van Nguyen
,
Q.
,
Nielsen
,
L. S.
, and
Triolo
,
J. M.
, “
Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting
,”
Energy
112
,
606
617
(
2016
).
36.
Borges
,
C. P.
,
Sobczak
,
J. C.
,
Silberg
,
T. R.
,
Uriona-Maldonado
,
M.
, and
Vaz
,
C. R.
, “
A systems modeling approach to estimate biogas potential from biomass sources in Brazil
,”
Renewable Sustainable Energy Rev.
138
,
110518
(
2021
).
37.
Borges
,
P. T.
,
Sales
,
M. B.
,
César Guimarães
,
C. E.
,
de França Serpa
,
J.
,
de Lima
,
R. K. C.
,
Sanders Lopes
,
A. A.
,
de Sousa Rios
,
M. A.
,
Desai
,
A. S.
,
da Silva Lima
,
A. M.
,
Lora
,
E. E. S.
, and
dos Santos
,
J. C. S.
, “
Photosynthetic green hydrogen: Advances, challenges, opportunities, and prospects
,”
Int. J. Hydrogen Energy
49
,
433
458
(
2024
).
38.
Brémond
,
U.
,
Bertrandias
,
A.
,
Steyer
,
J.-P.
,
Bernet
,
N.
, and
Carrere
,
H.
, “
A vision of European biogas sector development towards 2030: Trends and challenges
,”
J. Cleaner Prod.
287
,
125065
(
2021
).
39.
Budžaki
,
S.
,
Miljić
,
G.
,
Tišma
,
M.
,
Sundaram
,
S.
, and
Hessel
,
V.
, “
Is there a future for enzymatic biodiesel industrial production in microreactors?
,”
Appl. Energy.
201
,
124
134
(
2017
).
40.
Bumbiere
,
K.
,
Gancone
,
A.
,
Pubule
,
J.
,
Kirsanovs
,
V.
,
Vasarevicius
,
S.
, and
Blumberga
,
D.
, “
Ranking of bioresources for biogas production
,”
Environ. Clim. Technol.
24
,
368
377
(
2020
).
41.
Bumbiere
,
K.
,
Pubule
,
J.
, and
Blumberga
,
D.
, “
What will be the future of biogas sector?
,”
Environ. Clim. Technol.
25
,
295
305
(
2021
).
42.
Campello
,
L. D.
,
Barros
,
R. M.
,
Tiago Filho
,
G. L.
, and
dos Santos
,
I. F. S.
, “
Analysis of the economic viability of the use of biogas produced in wastewater treatment plants to generate electrical energy
,”
Environ. Dev. Sustainable
23
,
2614
2629
(
2021
).
43.
Cao
,
X.
,
Wang
,
H.
,
Li
,
X.-q.
,
Fang
,
Z.
, and
Li
,
X.-n.
, “
Enhanced degradation of azo dye by a stacked microbial fuel cell-biofilm electrode reactor coupled system
,”
Bioresour. Technol.
227
,
273
278
(
2017
).
44.
Castilho
,
L. R.
,
Mitchel
,
D. A.
, and
Freire
,
D. M. G.
, “
Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation
,”
Bioresour. Technol.
100
,
5996
(
2009
).
45.
Catherine
,
H.
,
Penninckx
,
M.
, and
Frédéric
,
D.
, “
Product formation from phenolic compounds removal by laccases: A review
,”
Environ. Technol. Innovation
5
,
250
266
(
2016
).
46.
Catumba
,
B. D.
,
Sales
,
M. B.
,
Borges
,
P. T.
,
Ribeiro Filho
,
M. N.
,
Lopes
,
A. A. S.
,
Sousa Rios
,
M. A. d.
,
Desai
,
A. S.
,
Bilal
,
M.
, and
Santos
,
J. d.
, “
Sustainability and challenges in hydrogen production: An advanced bibliometric analysis
,”
Int. J. Hydrogen Energy
48
,
7975
7992
(
2023
).
47.
Cavalcante
,
F. T. T.
,
da Silva Moreira
,
K.
,
Lima
,
P. J. M.
,
de Castro Monteiro
,
R. R.
,
Pinheiro
,
B. B.
,
Neto
,
C. A. C. G.
,
dos Santos
,
K. P.
,
de Souza
,
M. C. M.
,
de Lima
,
R. K. C.
, and
dos Santos
,
J. C. S.
, “
Nanotechnology systems for biofuels production
,” in
Nanomaterials and Nanotechnology: Biomedical, Environmental, and Industrial Applications
, edited by
do Nascimento
,
R. F.
,
de Oliveira Sousa Neto
,
V.
,
Fechine
,
P. B. A.
, and
de Tarso Cavalcante Freire
,
P.
(
Springer
,
Singapore
,
2021
), pp.
445
471
.
48.
Cavalcante
,
I. O.
,
Simão Neto
,
F.
,
Sousa
,
P. d. S.
,
Aires
,
F. I. d. S.
,
Dari
,
D. N.
,
Chaves de Lima
,
R. K.
, and
dos Santos
,
J. C. S.
, “
Evolving sustainable energy technologies and assessments through global research networks: Advancing the role of blue hydrogen for a cleaner future
,”
RSC Sustainability
2
,
348
368
(
2024
).
49.
Chen
,
C.
,
Chitose
,
A.
,
Kusadokoro
,
M.
,
Nie
,
H.
,
Xu
,
W.
,
Yang
,
F.
, and
Yang
,
S.
, “
Sustainability and challenges in biodiesel production from waste cooking oil: An advanced bibliometric analysis
,”
Energy Rep.
7
,
4022
4034
(
2021
).
50.
Chen
,
Y.
,
Xiao
,
B.
,
Chang
,
J.
,
Fu
,
Y.
,
Lv
,
P.
, and
Wang
,
X.
, “
Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor
,”
Energy Convers. Manage.
50
,
668
673
(
2009
).
51.
Cheng
,
J.
,
Zhang
,
C.
,
Sun
,
J.
, and
Qiu
,
L.
, “
Sustainability accounting for the construction and operation of a plant-scale solar-biogas heating system based on emergy analysis
,”
Int. J. Energy Res.
43
,
3806
3822
(
2019
).
52.
Chiaramonti
,
D.
,
Talluri
,
G.
,
Scarlat
,
N.
, and
Prussi
,
M.
, “
The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios
,”
Renewable Sustainable Energy Rev.
139
,
110715
(
2021
).
53.
Choi
,
D.
,
Chipman
,
D. C.
,
Bents
,
S. C.
, and
Brown
,
R. C.
, “
A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass
,”
Appl. Biochem. Biotechnol.
160
,
1032
(
2010
).
54.
Choi
,
J.
and
Lee
,
S. Y.
, “
Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation
,”
Appl. Microbiol. Biotechnol.
51
,
13
(
1999
).
55.
Chuanchai
,
A.
and
Ramaraj
,
R.
, “
Sustainability assessment of biogas production from buffalo grass and dung: Biogas purification and bio-fertilizer
,”
3 Biotech
8
,
151
(
2018
).
56.
Correia
,
B. d. B.
, “
Energy, society and environment: Considerations about the contribution of biofuels to sustainable development
,” Energia, sociedade e meio ambiente: Consideracoes acerca da contribuicao dos biocombustiveis para o desenvolvimento sustentavel,
2010
.
57.
Cozendey da Silva
,
H. N.
,
Prata
,
D. M.
,
Alves Lima
,
G. B.
,
Zotes
,
L. P.
, and
Mattos
,
L. V.
, “
A techno-economic evaluation of the energy generation by proton exchange membrane fuel cell using biogas reforming
,”
J. Cleaner Prod.
200
,
598
608
(
2018
).
58.
da Silva
,
J. L.
,
Sales
,
M. B.
,
de Castro Bizerra
,
V.
,
Nobre
,
M. M. R.
,
de Sousa Braz
,
A. K.
,
da Silva Sousa
,
P.
,
Cavalcante
,
A. L. G.
,
Melo
,
R. L. F.
,
Gonçalves De Sousa Junior
,
P.
,
Neto
,
F. S.
,
da Fonseca
,
A. M.
, and
Santos
,
J. d.
, “
Lipase from Yarrowia lipolytica: Prospects as an industrial biocatalyst for biotechnological applications
,”
Fermentation
9
,
581
(
2023
).
59.
Dayi
,
B.
,
Kyzy
,
A. D.
,
Abduloglu
,
Y.
,
Cikrikci
,
K.
, and
Ardag Akdogan
,
H.
, “
Investigation of the ability of immobilized cells to different carriers in removal of selected dye and characterization of environmentally friendly laccase of Morchella esculenta
,”
Dyes Pigm.
151
,
15
21
(
2018
).
60.
de Castro Bizerra
,
V.
,
Sales
,
M. B.
,
Fernandes Melo
,
R. L.
,
Andrade do Nascimento
,
J. G.
,
Junior
,
J. B.
,
França Silva
,
M. P.
,
Moreira dos Santos
,
K.
,
da Silva Sousa
,
P.
,
Marques da Fonseca
,
A.
,
de Souza
,
M. C. M.
, and
Sousa dos Santos
,
J. C.
, “
Opportunities for cleaner leather processing based on protease enzyme: Current evidence from an advanced bibliometric analysis
,”
Renewable Sustainable Energy Rev.
191
,
114162
(
2024
).
61.
de Morais Andrade
,
M. M.
,
Alencar
,
B. R. A.
,
Leite
,
N. P.
,
Firmo
,
A. L. B.
,
Dutra
,
E. D.
,
de Sá Barretto Sampaio
,
E. V.
, and
Menezes
,
R. S. C.
, “
Biogas production from co-digestion of different proportions of food waste and fresh bovine manure
,”
Biomass Convers. Biorefin.
12
,
2697
2704
(
2022
).
62.
de Sousa
,
M. H.
,
da Silva
,
A. S. F.
,
Correia
,
R. C.
,
Leite
,
N. P.
,
Bueno
,
C. E. G.
,
dos Santos Pinheiro
,
R. L.
,
de Santana
,
J. S.
,
da Silva
,
J. L.
,
Sales
,
A. T.
,
de Souza
,
C. C.
,
da Silva Aquino
,
K. A.
,
de Souza
,
R. B.
,
Pinheiro
,
I. O.
,
Henríquez
,
J. R.
,
Schuler
,
A. R. P.
,
de Sá Barretto Sampaio
,
E. V.
,
Dutra
,
E. D.
, and
Menezes
,
R. S. C.
, “
Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: An integrated biorefinery approach
,”
Biomass Convers. Biorefin.
12
,
827
841
(
2022
).
63.
Dong
,
L.
and
Huang
,
Z.
, “
Some evidence and new insights for feedback loops of human-nature interactions from a holistic Earth perspective
,”
J. Cleaner Prod.
432
,
139667
(
2023
).
64.
Donthu
,
N.
,
Kumar
,
S.
,
Mukherjee
,
D.
,
Pandey
,
N.
, and
Lim
,
W. M.
, “
How to conduct a bibliometric analysis: An overview and guidelines
,”
J. Bus. Res.
133
,
285
296
(
2021
).
65.
dos Santos
,
A. L. M.
,
Castro
,
A. L. S.
,
Salomon
,
K. R.
,
de Souza
,
T. S. O.
, and
Vich
,
D. V.
, “
Global research trends on anaerobic digestion and biogas production from cassava wastewater: A bibliometric analysis
,”
J. Chem. Technol. Biotechnol.
97
,
1379
1389
(
2022
).
66.
Dou
,
B.
,
Wang
,
C.
,
Song
,
Y.
,
Chen
,
H.
,
Jiang
,
B.
,
Yang
,
M.
, and
Xu
,
Y.
, “
Solid sorbents for in-situ CO 2 removal during sorption-enhanced steam reforming process: A review
,”
Renewable Sustainable Energy Rev.
53
,
536
546
(
2016
).
67.
Douti
,
N. B.
,
Abanyie
,
S. K.
, and
Ampofo
,
S.
, “
Solid waste management challenges in urban areas of Ghana: A case study of Bawku Municipality
,”
Int. J. Geosci.
8
,
494
513
(
2017
).
68.
Dutra
,
L. d. S.
,
Costa Cerqueira Pinto
,
M.
,
Cipolatti
,
E. P.
,
Aguieiras
,
E. C. G.
,
Manoel
,
E. A.
,
Greco-Duarte
,
J.
,
Guimarães Freire
,
D. M.
, and
Pinto
,
J. C.
, “
How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research
,”
Renewable Sustainable Energy Rev.
153
,
111765
(
2022
).
69.
El-Dalatony
,
M. M.
,
Sharma
,
P.
,
Hussein
,
E. E.
,
Elnaggar
,
A. Y.
, and
Salama
,
E.-S.
, “
Pig- and vegetable-cooked waste oils as feedstock for biodiesel, biogas, and biopolymer production
,”
Biomass Convers. Biorefin.
(published online) (
2022
).
70.
El-Mashad
,
H. M.
and
Zhang
,
R.
, “
Biogas production from co-digestion of dairy manure and food waste
,”
Bioresour. Technol.
101
,
4021
4028
(
2010
).
71.
Ertem
,
F. C.
and
Acheampong
,
M.
, “
Impacts of demand-driven energy production concept on the heat utilization efficiency at biogas plants: Heat waste and flexible heat production
,”
Process Integr. Optim. Sustainability
2
,
1
16
(
2018
).
72.
Estrada
,
J. M.
,
Kraakman
,
N. J. R.
,
Lebrero
,
R.
, and
Muñoz
,
R.
, “
A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies
,”
Biotechnol. Adv.
30
,
1354
(
2012
).
73.
Estrada
,
J. M.
,
Kraakman
,
N. J. R.
,
Muñoz
,
R.
, and
Lebrero
,
R.
, “
A comparative analysis of odour treatment technologies in wastewater treatment plants
,”
Environ. Sci. Technol.
45
,
1100
(
2011
).
74.
ExxonMobil
,
Energy Demand: Three Drivers
,
Outlook for Energy
,
2022
.
75.
Farias
,
P. I. V.
,
Freire
,
E.
,
Cunha
,
A. L. C.
,
da Grumbach
,
R. J. d. S.
, and
Antunes
,
A. M. d. S.
, “
The fertilizer industry in Brazil and the assurance of inputs for biofuels production: Prospective scenarios after COVID-19
,”
Sustainability
12
,
8889
(
2020
).
76.
Farzaneh-Gord
,
M.
and
Rahbari
,
H. R.
, “
Response of natural gas distribution pipeline networks to ambient temperature variation (unsteady simulation)
,”
J. Nat. Gas Sci. Eng.
52
,
94
105
(
2018
).
77.
Feng
,
Y.
,
Hu
,
J.
,
Afshan
,
S.
,
Irfan
,
M.
,
Hu
,
M.
, and
Abbas
,
S.
, “
Bridging resource disparities for sustainable development: A comparative analysis of resource-rich and resource-scarce countries
,”
Resour. Policy
85
,
103981
(
2023
).
78.
Ferella
,
F.
,
Cucchiella
,
F.
,
D'Adamo
,
I.
, and
Gallucci
,
K.
, “
A techno-economic assessment of biogas upgrading in a developed market
,”
J. Cleaner Prod
210
,
945
957
(
2019
).
79.
Fernandes
,
R. A.
,
Daniel-da-Silva
,
A. L.
,
Tavares
,
A. P. M.
, and
Xavier
,
A. M. R. B.
, “
EDTA-Cu (II) chelating magnetic nanoparticles as a support for laccase immobilization
,”
Chem. Eng. Sci.
158
,
599
605
(
2017
).
80.
Fernández-Dacosta
,
C.
,
Posada
,
J. A.
,
Kleerebezem
,
R.
,
Cuellar
,
M. C.
, and
Ramirez
,
A.
, “
Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-Economic analysis and ex-ante environmental assessment
,”
Bioresour. Technol.
185
,
368
(
2015
).
81.
Ferreira
,
R. d. G.
,
Azzoni
,
A. R.
, and
Freitas
,
S.
, “
Techno-economic analysis of the industrial production of a low-cost enzyme using E. coli: The case of recombinant β-glucosidase
,”
Biotechnol. Biofuels
11
,
81
(
2018
).
82.
Florencio
,
C.
,
Badino
,
A. C.
, and
Farinas
,
C. S.
, “
Current challenges on the production and use of cellulolytic enzymes in the hydrolysis of lignocellulosic biomass
,”
Quim. Nova
40
,
1082
1093
(
2017
).
83.
Florini
,
A.
, “
The international energy agency in global energy governance
,”
Global Policy
2
,
40
50
(
2011
).
84.
Foong
,
S. Z. Y.
,
Chong
,
M. F.
, and
Ng
,
D. K. S.
, “
Strategies to promote biogas generation and utilisation from palm oil mill effluent
,”
Process Integr. Optim. Sustainability
5
,
175
191
(
2021
).
85.
François
,
M.
,
Lin
,
K.-S.
,
Rachmadona
,
N.
, and
Khoo
,
K. S.
, “
Advancement of nanotechnologies in biogas production and contaminant removal: A review
,”
Fuel
340
,
127470
(
2023
).
86.
Freitas
,
F. F.
,
Coelho
,
U. R.
,
Silva
,
S. T. S.
,
Gomes
,
A. A. L.
,
Barros
,
R. M.
,
Filho
,
G. L. T.
,
Lora
,
E. E. S.
, and
dos Santos
,
I. F. S.
, “
Study of the potential for energy use of biogas from a wastewater treatment plant to a medium-sized city: A technical, economic and environmental analysis
,”
Waste Biomass Valorization
13
,
3509
3521
(
2022
).
87.
Fu
,
Y.
,
Luo
,
T.
,
Mei
,
Z.
,
Li
,
J.
,
Qiu
,
K.
, and
Ge
,
Y.
, “
Dry anaerobic digestion technologies for agricultural straw and acceptability in China
,”
Sustainability
10
,
4588
(
2018
).
88.
Fu
,
Y.
and
Viraraghavan
,
T.
, “
Fungal decolorization of dye wastewaters: A review
,”
Bioresour. Technol.
79
,
251
262
(
2001
).
89.
Gao
,
Z.
,
Zhang
,
C.
,
Su
,
H.
, and
Tan
,
T.
, “
Live steam-pretreatment and anaerobic digestion of waste activated sludge
,”
Environ. Eng. Sci.
30
,
546
554
(
2013
).
90.
Garibov
,
A. A.
,
Miralamov
,
G. F.
,
Mamedov
,
R. C.
, and
Velibekova
,
G. Z.
, “
Influence of technological cycles of natural gas treatment on radioactive radon content in its composition
,” in
Radiation Safety Problems In The Caspian Region
, NATO Science Series IV Earth and Environmental Sciences, edited by
Zaidi
,
M. K.
and
Mustafaev
,
I.
(
Springer
,
The Netherlands
,
2004
), pp.
151
155
.
91.
Gbangbo
,
K. R.
,
Kouakou
,
A. R.
,
Ehouman
,
A. D.
,
Yao
,
B.
,
Goli Lou
,
G. V.-E.
,
Briton
,
B. G. H.
,
Gnaboa
,
Z.
,
Bah
,
K. N. A. B. A.
, and
Amadou Kiari
,
M. N.
, “
Characterization of plantain peels activated carbon supported with iron nanoparticles after adsorption of hydrogen sulfide from biogas
,”
Chem. Afr.
6
,
757
763
(
2023
).
92.
Ghosh
,
P.
,
Shah
,
G.
,
Sahota
,
S.
,
Singh
,
L.
, and
Vijay
,
V. K.
, “
Biogas production from waste: Technical overview, progress, and challenges
,” in
Bioreactors
(
Elsevier
,
2020
), pp.
89
104
.
93.
Gopal
,
L. C.
,
Govindarajan
,
M.
,
Kavipriya
,
M. R.
,
Mahboob
,
S.
,
Al-Ghanim
,
K. A.
,
Virik
,
P.
,
Ahmed
,
Z.
,
Al-Mulhm
,
N.
,
Senthilkumaran
,
V.
, and
Shankar
,
V.
, “
Optimization strategies for improved biogas production by recycling of waste through response surface methodology and artificial neural network: Sustainable energy perspective research
,”
J. King Saud Univ. Sci.
33
,
101241
(
2021
).
94.
Guerini Filho
,
M.
,
Lumi
,
M.
,
Hasan
,
C.
,
Marder
,
M.
,
Leite
,
L. C. S.
, and
Konrad
,
O.
, “
Energy recovery from wine sector wastes: A study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil
,”
Sustainable Energy Technol. Assess.
29
,
44
49
(
2018
).
95.
Guerini Filho
,
M.
,
Steinmetz
,
R. L. R.
,
Bezama
,
A.
,
Hasan
,
C.
,
Lumi
,
M.
, and
Konrad
,
O.
, “
Biomass availability assessment for biogas or methane production in Rio Grande do Sul, Brazil
,”
Clean Technol. Environ. Policy
21
,
1353
1366
(
2019
).
96.
Guimarães
,
C. E. C.
,
Neto
,
F. S.
,
de Castro Bizerra
,
V.
,
do Nascimento
,
J. G. A.
,
Valério
,
R. B. R.
,
de Sousa Junior
,
P. G.
,
de Sousa Braz
,
A. K.
,
Melo
,
R. L. F.
,
de França Serpa
,
J.
,
de Lima
,
R. K. C.
,
Guimarães
,
A. P.
,
de Souza
,
M. C. M.
,
Lopes
,
A. A. S.
,
de Sousa Rios
,
M. A.
,
Desai
,
A. S.
,
Bilal
,
M.
,
Smułek
,
W.
,
Jesionowski
,
T.
, and
dos Santos
,
J. C. S.
, “
Sustainable bioethanol production from first- and second-generation sugar-based feedstocks: Advanced bibliometric analysis
,”
Bioresour. Technol. Rep.
23
,
101543
(
2023
).
97.
Guimarães Freire
,
D. M.
,
de Sousa
,
J. S.
, and
Cavalcanti-Oliveira
,
E. d.
, “
Biotechnological methods to produce biodiesel
,” in
Biofuels
(
Elsevier
,
2011
), pp.
315
337
.
98.
Gulsen Akbay
,
H. E.
,
Dizge
,
N.
, and
Kumbur
,
H.
, “
Evaluation of electro-oxidation and Fenton pretreatments on industrial fruit waste and municipal sewage sludge to enhance biogas production by anaerobic co-digestion
,”
J. Environ. Manage.
319
,
115711
(
2022
).
99.
Gunes
,
B.
,
Stokes
,
J.
,
Davis
,
P.
,
Connolly
,
C.
, and
Lawler
,
J.
, “
Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review
,”
Renewable Sustainable Energy Rev.
113
,
109281
(
2019
).
100.
Hafuka
,
A.
,
Sakaida
,
K.
,
Satoh
,
H.
,
Takahashi
,
M.
,
Watanabe
,
Y.
, and
Okabe
,
S.
, “
Effect of feeding regiments on polyhydroxyalkanoate production from food wastes by Cupriavidus necator
,”
Bioresour. Technol.
102
,
3551
(
2011
).
101.
Hagos
,
K.
,
Zong
,
J.
,
Li
,
D.
,
Liu
,
C.
, and
Lu
,
X.
, “
Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives
,”
Renewable Sustainable Energy Rev.
76
,
1485
1496
(
2017
).
102.
Hai
,
T.
,
Ashraf Ali
,
M.
,
Alizadeh
,
A.
,
Sharma
,
K.
,
Almujibah
,
H. R.
,
Alshahri
,
A. H.
, and
Farhang
,
B.
, “
4E analysis and tri-dimensional optimization of a hybrid energy system based on biogas from the digester and high-efficiency fuel cell: An attempt to reach sustainability with decreased emission and increased efficiency
,”
Sustainable Energy Technol. Assess.
57
,
103189
(
2023
).
103.
Harun
,
R.
,
Davidson
,
M.
,
Doyle
,
M.
,
Gopiraj
,
R.
,
Danquah
,
M.
, and
Forde
,
G.
, “
Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility
,”
Biomass Bioenergy
35
,
741
747
(
2011
).
104.
Herrmann
,
A.
, “
Biogas production from Maize: Current state, challenges and prospects. 2. Agronomic and environmental aspects
,”
Bioenergy Res.
6
,
372
387
(
2013
).
105.
Hertel
,
S.
,
Navarro
,
P.
,
Deegener
,
S.
, and
Körner
,
I.
, “
Biogas and nutrients from blackwater, lawn cuttings and grease trap residues—experiments for Hamburg's Jenfelder Au district
,”
Energy, Sustainable Soc.
5
,
29
(
2015
).
106.
Hielscher
,
S.
,
Wittmayer
,
J. M.
, and
Dańkowska
,
A.
, “
Social movements in energy transitions: The politics of fossil fuel energy pathways in the United Kingdom, the Netherlands and Poland
,”
Extr. Ind. Soc.
10
,
101073
(
2022
).
107.
Holm-Nielsen
,
J. B.
,
Al Seadi
,
T.
, and
Oleskowicz-Popiel
,
P.
, “
The future of anaerobic digestion and biogas utilization
,”
Bioresour. Technol.
100
,
5478
5484
(
2009
).
108.
Hudakorn
,
T.
,
Kitjettanee
,
C.
,
Noppong
,
S.
, and
Jaruyanon
,
P.
,
2019
. “
A feasibility study of continuous stirred tank reactor (CSTR) biogas network from water hyacinth at Hin Moon, Bang Tien, Nakhon Pathom Province
,” in
7th International Electrical Engineering Congress (IEEECON 2019)
(
IEEE
, 2019), pp.
1
4
.
109.
Ingrao
,
C.
,
Bacenetti
,
J.
,
Adamczyk
,
J.
,
Ferrante
,
V.
,
Messineo
,
A.
, and
Huisingh
,
D.
, “
Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of life cycle assessments
,”
Renewable Energy
136
,
296
307
(
2019
).
110.
Iordan
,
C.
,
Lausselet
,
C.
, and
Cherubini
,
F.
, “
Life-cycle assessment of a biogas power plant with application of different climate metrics and inclusion of near-term climate forcers
,”
J. Environ. Manage.
184
,
517
527
(
2016
).
111.
Ishaq
,
M.
and
Ishaq
,
H.
, “
Performance assessment of biogas-fed solid oxide fuel cell system for municipal solid waste treatment
,”
J. Cleaner Prod.
354
,
131702
(
2022
).
112.
Jadhav
,
P.
,
Khalid
,
Z. B.
,
Krishnan
,
S.
,
Bhuyar
,
P.
,
Zularisam
,
A. W.
,
Razak
,
A. S. A.
, and
Nasrullah
,
M.
, “
Application of iron-cobalt-copper (Fe-Co–Cu) trimetallic nanoparticles on anaerobic digestion (AD) for biogas production
,”
Biomass Convers. Biorefin.
14
,
7591
7601
(
2024
).
113.
Jadhav
,
P.
,
Nasrullah
,
M.
,
Zularisam
,
A. W.
,
Bhuyar
,
P.
,
Krishnan
,
S.
, and
Mishra
,
P.
, “
Direct interspecies electron transfer performance through nanoparticles (NPs) for biogas production in the anaerobic digestion process
,”
Int. J. Environ. Sci. Technol.
19
,
10427
10439
(
2022
).
114.
Kalia
,
A.
and
Singh
,
S.
, “
Myco-decontamination of azo dyes: Nano-augmentation technologies
,”
3 Biotech
10
,
384
(
2020
).
115.
Karlsson
,
N. P. E.
, “
Business models and business cases for financial sustainability: Insights on corporate sustainability in the Swedish farm-based biogas industry
,”
Sustainable Prod. Consum.
18
,
115
129
(
2019
).
116.
Karlsson
,
N. P. E.
,
Hoveskog
,
M.
,
Halila
,
F.
, and
Mattsson
,
M.
, “
Early phases of the business model innovation process for sustainability: Addressing the status quo of a Swedish biogas-producing farm cooperative
,”
J. Cleaner Prod.
172
,
2759
2772
(
2018
).
117.
Karne
,
H.
,
Mahajan
,
U.
,
Ketkar
,
U.
,
Kohade
,
A.
,
Khadilkar
,
P.
, and
Mishra
,
A.
, “
A review on biogas upgradation systems
,”
Mater. Today: Proc.
72
,
775
786
(
2023
).
118.
Karrabi
,
M.
,
Ranjbar
,
F. M.
,
Shahnavaz
,
B.
, and
Seyedi
,
S.
, “
A comprehensive review on biogas production from lignocellulosic wastes through anaerobic digestion: An insight into performance improvement strategies
,”
Fuel
340
,
127239
(
2023
).
119.
Karray
,
R.
,
Hamza
,
M.
, and
Sayadi
,
S.
, “
Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production
,”
Bioresour. Technol.
187
,
205
213
(
2015
).
120.
Keerthana Devi
,
M.
,
Manikandan
,
S.
,
Oviyapriya
,
M.
,
Selvaraj
,
M.
,
Assiri
,
M. A.
,
Vickram
,
S.
,
Subbaiya
,
R.
,
Karmegam
,
N.
,
Ravindran
,
B.
,
Chang
,
S. W.
, and
Awasthi
,
M. K.
, “
Recent advances in biogas production using Agro-Industrial Waste: A comprehensive review outlook of Techno-Economic analysis
,”
Bioresour. Technol.
363
,
127871
(
2022
).
121.
Keohane
,
R. O.
, “
The international energy agency: State influence and transgovernmental politics
,”
Int. Organ.
32
,
929
951
(
1978
).
122.
Kjerstadius
,
H.
,
Haghighatafshar
,
S.
, and
Davidsson
,
Å.
, “
Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems
,”
Environ. Technol.
36
,
1707
1720
(
2015
).
123.
Kohl
,
W. L.
, “
Consumer country energy cooperation: The International Energy Agency and the global energy order
,”
Global Energy Governance: New Rules Game
(
Brookings Institution Press
,
2010
), pp.
195
220
.
124.
Kohlheb
,
N.
,
Wluka
,
M.
,
Bezama
,
A.
,
Thrän
,
D.
,
Aurich
,
A.
, and
Müller
,
R. A.
, “
Environmental-economic assessment of the pressure swing adsorption biogas upgrading technology
,”
Bioenergy Res.
14
,
901
909
(
2021
).
125.
Kolbl
,
S.
,
Panjan
,
J.
, and
Stres
,
B.
, “
Mixture of primary and secondary municipal wastewater sludge as a short-term substrate in 2 MW agricultural biogas plant: Site-specific sustainability of enzymatic and ultrasound pretreatments
,”
J. Chem. Technol. Biotechnol.
91
,
2769
2778
(
2016
).
126.
Korbag
,
I.
,
Mohamed
,
S.
,
Omer
,
S.
,
Boghazala
,
H.
,
Ahmeedah
,
M.
, and
Abusasiyah
,
A.
,
Recent Advances of Biogas Production and Future Perspective
(
IntechOpen
,
2021
).
127.
Kossmann
,
W.
,
Pönitz
,
U.
,
Habermehl
,
S.
,
Hoerz
,
T.
, and
Krämer
,
P.
,
Biogas Digest
(
GTZ
,
1999
), Vol. III.
128.
Koyani
,
K.
,
Shah
,
M.
,
Parikh
,
S. P.
, and
Shah
,
D.
, “
A systematic study on simulation and modeling of a solar biogas reactor
,”
Environ. Sci. Pollut. Res.
30
,
44378
44399
(
2023
).
129.
Kumar
,
M.
,
Dutta
,
S.
,
You
,
S.
,
Luo
,
G.
,
Zhang
,
S.
,
Show
,
P. L.
,
Sawarkar
,
A. D.
,
Singh
,
L.
, and
Tsang
,
D. C. W.
, “
A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge
,”
J. Cleaner Prod.
305
,
127143
(
2021
).
130.
Lansing
,
S.
,
Martin
,
J. F.
,
Botero
,
R. B.
,
da Silva
,
T. N.
, and
da Silva
,
E. D.
, “
Methane production in low-cost, unheated, plug-flow digesters treating swine manure and used cooking grease
,”
Bioresour. Technol.
101
,
4362
4370
(
2010
).
131.
Lanzini
,
A.
,
Madi
,
H.
,
Chiodo
,
V.
,
Papurello
,
D.
,
Maisano
,
S.
,
Santarelli
,
M.
, and
Van herle
,
J.
, “
Dealing with fuel contaminants in biogas-fed solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) plants: Degradation of catalytic and electro-catalytic active surfaces and related gas purification methods
,”
Prog. Energy Combust. Sci.
61
,
150
188
(
2017
).
132.
Lebrero
,
R.
,
Toledo-Cervantes
,
A.
,
Muñoz
,
R.
,
del Nery
,
V.
, and
Foresti
,
E.
, “
Biogas upgrading from vinasse digesters: A comparison between an anoxic biotrickling filter and an algal-bacterial photobioreactor
,”
J. Chem. Technol. Biotechnol.
91
,
2488
(
2016
).
133.
Lecharlier
,
A.
,
Carrier
,
H.
, and
Le Hécho
,
I.
, “
Characterization of biogas and biomethane trace compounds: A critical review of advances in in situ sampling and preconcentration techniques
,”
Anal. Chim. Acta
1229
,
340174
(
2022
).
134.
Lee
,
M. E.
,
Steiman
,
M. W.
, and
St. Angelo
,
S. K.
, “
Biogas digestate as a renewable fertilizer: Effects of digestate application on crop growth and nutrient composition
,”
Renewable Agric. Food Syst.
36
,
173
181
(
2021
).
135.
Liebetrau
,
J.
,
Clemens
,
J.
,
Cuhls
,
C.
,
Hafermann
,
C.
,
Friehe
,
J.
,
Weiland
,
P.
, and
Daniel-Gromke
,
J.
, “
Methane emissions from biogas-producing facilities within the agricultural sector
,”
Eng. Life Sci.
10
,
595
599
(
2010
).
136.
Liew
,
Z. K.
,
Chan
,
Y. J.
,
Ho
,
Z. T.
,
Yip
,
Y. H.
,
Teng
,
M. C.
,
Ameer Abbas bin
,
A. I. T.
,
Chong
,
S.
,
Show
,
P. L.
, and
Chew
,
C. L.
, “
Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation
,”
Renewable Energy
179
,
766
777
(
2021
).
137.
Lijó
,
L.
,
González-García
,
S.
,
Bacenetti
,
J.
, and
Moreira
,
M. T.
, “
The environmental effect of substituting energy crops for food waste as feedstock for biogas production
,”
Energy
137
,
1130
1143
(
2017
).
138.
Lindeque
,
R.
and
Woodley
,
J.
, “
Reactor selection for effective continuous biocatalytic production of pharmaceuticals
,”
Catalysts
9
,
262
(
2019
).
139.
Liu
,
Z.
,
Wang
,
D.-Y.
,
Li
,
G.
,
Ning
,
T.-Y.
,
Tian
,
S.-Z.
,
Hu
,
H.-Y.
, and
Li
,
Z.-J.
, “
Cosmic exergy-based ecological assessment for farmland-dairy-biogas agroecosystems in North China
,”
J. Cleaner Prod.
159
,
317
325
(
2017
).
140.
Longati
,
A. A.
,
Lino
,
A. R. A.
,
Giordano
,
R. C.
,
Furlan
,
F. F.
, and
Cruz
,
A. J. G.
, “
Biogas production from anaerobic digestion of vinasse in sugarcane biorefinery: A techno-economic and environmental analysis
,”
Waste Biomass Valorization
11
,
4573
4591
(
2020
).
141.
López
,
J. C.
,
Arnáiz
,
E.
,
Merchán
,
L.
,
Lebrero
,
R.
, and
Muñoz
,
R.
, “
Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: A step further in anaerobic digestion biorefineries
,”
Chem. Eng. J.
333
,
529
(
2018
).
142.
Lorenzi
,
G.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Martin
,
A.
, “
Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation
,”
Energy
141
,
1524
1537
(
2017
).
143.
Maamri
,
S.
and
Amrani
,
M.
, “
Biogas production from waste activated sludge using cattle dung inoculums: Effect of total solid contents and kinetics study
,”
Energy Procedia
50
,
352
359
(
2014
).
144.
Magrí
,
A.
,
Giovannini
,
F.
,
Connan
,
R.
,
Bridoux
,
G.
, and
Béline
,
F.
, “
Nutrient management from biogas digester effluents: A bibliometric-based analysis of publications and patents
,”
Int. J. Environ. Sci. Technol.
14
,
1739
1756
(
2017
).
145.
Manesh
,
M. H. K.
,
Rezazadeh
,
A.
, and
Kabiri
,
S.
, “
A feasibility study on the potential, economic, and environmental advantages of biogas production from poultry manure in Iran
,”
Renewable Energy
159
,
87
106
(
2020
).
146.
Mao
,
C.
,
Feng
,
Y.
,
Wang
,
X.
, and
Ren
,
G.
, “
Review on research achievements of biogas from anaerobic digestion
,”
Renewable Sustainable Energy Rev.
45
,
540
555
(
2015
).
147.
Mattioli
,
A.
,
Boscaro
,
D.
,
Dalla Venezia
,
F.
,
Correale Santacroce
,
F.
,
Pezzuolo
,
A.
,
Sartori
,
L.
, and
Bolzonella
,
D.
, “
Biogas from residual grass: A territorial approach for sustainable bioenergy production
,”
Waste Biomass Valorization
8
,
2747
2756
(
2017
).
148.
Mbachu
,
V. M.
,
Ovuworie
,
G. C.
,
Okwu
,
M. O.
, and
Tartibu
,
L. K.
, “
Modelling sustainability of a demand-based biomass to biogas conversion system: A bio-mimicry feedstock inventory-based approach
,”
Biomass Convers. Biorefin.
13
,
4597
4963
(
2021
).
149.
McDonald
,
T.
,
Achari
,
G.
, and
Abiola
,
A.
, “
Feasibility of increased biogas production from the co-digestion of agricultural, municipal, and agro-industrial wastes in rural communities
,”
J. Environ. Eng. Sci.
7
,
263
273
(
2008
).
150.
Melo
,
L. B.
,
Estanislau
,
F. e.
,
Costa
,
A. L.
, and
Fortini
,
Â.
, “
Impacts of the hydrological potential change on the energy matrix of the Brazilian State of Minas Gerais: A case study
,”
Renewable Sustainable Energy Rev.
110
,
415
422
(
2019
).
151.
Melo
,
R. L. F.
,
Sales
,
M. B.
,
de Castro Bizerra
,
V.
,
de Sousa Junior
,
P. G.
,
Cavalcante
,
A. L. G.
,
Freire
,
T. M.
,
Neto
,
F. S.
,
Bilal
,
M.
,
Jesionowski
,
T.
,
Soares
,
J. M.
,
Fechine
,
P. B. A.
, and
dos Santos
,
J. C. S.
, “
Recent applications and future prospects of magnetic biocatalysts
,”
Int. J. Biol. Macromol.
253
,
126709
(
2023
).
152.
Mishra
,
A.
,
Kumar
,
M.
,
Bolan
,
N. S.
,
Kapley
,
A.
,
Kumar
,
R.
, and
Singh
,
L.
, “
Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges
,”
Bioresour. Technol.
338
,
125514
(
2021
).
153.
Moeller
,
L.
and
Görsch
,
K.
, “
Foam formation in full-scale biogas plants processing biogenic waste
,”
Energy, Sustainability Soc.
5
,
1
(
2015
).
154.
Moeller
,
L.
and
Zehnsdorf
,
A.
, “
Process upsets in a full-scale anaerobic digestion bioreactor: Over-acidification and foam formation during biogas production
,”
Energy, Sustainability Soc.
6
,
30
(
2016
).
155.
Montenegro Camacho
,
Y. S.
,
Bensaid
,
S.
,
Piras
,
G.
,
Antonini
,
M.
, and
Fino
,
D.
, “
Techno-economic analysis of green hydrogen production from biogas autothermal reforming
,”
Clean Technol. Environ. Policy
19
,
1437
1447
(
2017
).
156.
Mould
,
K.
,
Silva
,
F.
,
Knott
,
S. F.
, and
O'Regan
,
B.
, “
A comparative analysis of biogas and hydrogen, and the impact of the certificates and blockchain new paradigms
,”
Int. J. Hydrogen Energy
47
,
39303
39318
(
2022
).
157.
de Moura
,
A. M. M. d.
,
Roma
,
J. C.
, and
Saccaro Junior
,
N. L.
,
Problemas econômicos, soluções ambientais
,
2016
.
158.
Mupambwa
,
H. A.
,
Namwoonde
,
A. S.
,
Liswaniso
,
G. M.
,
Hausiku
,
M. K.
, and
Ravindran
,
B.
, “
Biogas digestates are not an effective nutrient solution for hydroponic tomato (Lycopersicon esculentum L.) production under a deep water culture system
,”
Heliyon
5
,
e02736
(
2019
).
159.
Narsing Rao
,
M. P.
,
Xiao
,
M.
, and
Li
,
W.-J.
, “
Fungal and bacterial pigments: Secondary metabolites with wide applications
,”
Front. Microbiol.
8
,
1113
(
2017
).
160.
Nashmin Elyasi
,
S.
,
He
,
L.
,
Tsapekos
,
P.
,
Rafiee
,
S.
,
Khoshnevisan
,
B.
,
Carbajales-Dale
,
M.
,
Saeid Mohtasebi
,
S.
,
Liu
,
H.
, and
Angelidaki
,
I.
, “
Could biological biogas upgrading be a sustainable substitution for water scrubbing technology? A case study in Denmark
,”
Energy Convers. Manage.
245
,
114550
(
2021
).
161.
Ncube
,
A.
,
Cocker
,
J.
,
Ellis
,
D.
, and
Fiorentino
,
G.
, “
Biogas from source separated organic waste within a circular and life cycle perspective. A case study in Ontario, Canada
,”
Environ. Sustainability Indicators
11
,
100134
(
2021
).
162.
Neto
,
F. S.
,
Fernandes de Melo Neta
,
M. M.
,
Sales
,
M. B.
,
Silva de Oliveira
,
F. A.
,
de Castro Bizerra
,
V.
,
Sanders Lopes
,
A. A.
,
de Sousa Rios
,
M. A.
, and
Santos
,
J. d.
, “
Research progress and trends on utilization of lignocellulosic residues as supports for enzyme immobilization via advanced bibliometric analysis
,”
Polymers
15
,
2057
(
2023
).
163.
Nevzorova
,
T.
and
Kutcherov
,
V.
, “
Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review
,”
Energy Strategy Rev.
26
,
100414
(
2019
).
164.
Nilsen
,
H. R.
, “
The hierarchy of resource use for a sustainable circular economy
,”
Int. J. Soc. Econ.
47
,
27
40
(
2020
).
165.
Nindhia
,
T. G. T.
,
McDonald
,
M.
, and
Styles
,
D.
, “
Greenhouse gas mitigation and rural electricity generation by a novel two-stroke biogas engine
,”
J. Cleaner Prod.
280
,
124473
(
2021
).
166.
Nogueira
,
R. C.
,
Neto
,
F. S.
,
Junior
,
P. G. d. S.
,
Valério
,
R. B. R.
,
Serpa
,
J. d. F.
,
Lima
,
A. M. d. S.
,
de Souza
,
M. C. M.
,
de Lima
,
R. K. C.
,
Lopes
,
A. A. S.
,
Guimarães
,
A. P.
,
Melo
,
R. L. F.
,
Rios
,
M. A. d. S.
, and
dos Santos
,
J. C. S.
, “
Research trends and perspectives on hydrothermal gasification in producing biofuels
,”
Energy Nexus
10
,
100199
(
2023
).
167.
Nugraha
,
W. D.
,
Wafiroh
,
H.
,
Syafrudin
,
Junaidi
,
Budihardjo
,
M. A.
, and
Safitri
,
R. P.
, “
The effect of amylase and cellulase enzymes on biogas production from rice husk waste using solid-state anaerobic digestion (SS-AD) method
,”
IOP Conf. Ser.
623
,
012018
(
2021
).
168.
Nunes
,
L. J. R.
,
Loureiro
,
L. M. E. F.
,
,
L. C. R.
, and
Silva
,
H. F. C.
, “
Evaluation of the potential for energy recovery from olive oil industry waste: Thermochemical conversion technologies as fuel improvement methods
,”
Fuel
279
,
118536
(
2020
).
169.
Obileke
,
K.
,
Nwokolo
,
N.
,
Makaka
,
G.
,
Mukumba
,
P.
, and
Onyeaka
,
H.
, “
Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review
,”
Energy Environ.
32
,
191
225
(
2021
).
170.
Odejobi
,
O. J.
,
Ajala
,
O. O.
, and
Osuolale
,
F. N.
, “
Review on potential of using agricultural, municipal solid and industrial wastes as substrates for biogas production in Nigeria
,”
Biomass Convers. Biorefin.
14
,
1567
1579
(
2024
).
171.
Orlando
,
M.-Q.
and
Borja
,
V.-M.
, “
Pretreatment of animal manure biomass to improve biogas production: A review
,”
Energies
13
,
3573
(
2020
).
172.
Otero
,
A.
,
Mendoza
,
M.
,
Carreras
,
R.
, and
Fernández
,
B.
, “
Biogas production from slaughterhouse waste: Effect of blood content and fat saponification
,”
Waste Manage.
133
,
119
126
(
2021
).
173.
Othman
,
M. N.
,
Lim
,
J. S.
,
Theo
,
W. L.
,
Hashim
,
H.
, and
Ho
,
W. S.
, “
Optimisation and targeting of supply-demand of biogas system through gas system cascade analysis (GASCA) framework
,”
J. Cleaner Prod.
146
,
101
115
(
2017
).
174.
Papurello
,
D.
,
Lanzini
,
A.
,
Leone
,
P.
,
Santarelli
,
M.
, and
Silvestri
,
S.
, “
Biogas from the organic fraction of municipal solid waste: Dealing with contaminants for a solid oxide fuel cell energy generator
,”
Waste Manage.
34
,
2047
2056
(
2014
).
175.
Papurello
,
D.
,
Lanzini
,
A.
,
Tognana
,
L.
,
Silvestri
,
S.
, and
Santarelli
,
M.
, “
Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack
,”
Energy
85
,
145
158
(
2015
).
176.
Papurello
,
D.
,
Silvestri
,
S.
,
Biasioli
,
F.
, and
Lombardi
,
L.
, “
Wood ash biomethane upgrading system: A case study
,”
Renewable Energy
182
,
702
712
(
2022
).
177.
Papurello
,
D.
,
Tomasi
,
L.
, and
Silvestri
,
S.
, “
Proton transfer reaction mass spectrometry for the gas cleaning using commercial and waste-derived materials: Focus on the siloxane removal for SOFC applications
,”
Int. J. Mass Spectrom.
430
,
69
79
(
2018
).
178.
Papurello
,
D.
,
Gandiglio
,
M.
,
Kafashan
,
J.
, and
Lanzini
,
A.
, “
Biogas purification: A comparison of adsorption performance in D4 siloxane removal between commercial activated carbons and waste wood-derived char using isotherm equations
,”
Processes
7
,
774
(
2019
).
179.
Peppers
,
J.
,
Li
,
Y.
,
Xue
,
J.
,
Chen
,
X.
,
Alaimo
,
C.
,
Wong
,
L.
,
Young
,
T.
,
Green
,
P. G.
,
Jenkins
,
B.
,
Zhang
,
R.
, and
Kleeman
,
M. J.
, “
Performance analysis of membrane separation for upgrading biogas to biomethane at small scale production sites
,”
Biomass Bioenergy
128
,
105314
(
2019
).
180.
Pérez
,
R.
,
Cantera
,
S.
,
Bordel
,
S.
,
García-Encina
,
P. A.
, and
Muñoz
,
R.
, “
The effect of temperature during culture enrichment on methanotrophic polyhydroxyalkanoate production
,”
Int. Biodeterior. Biodegrad.
140
,
144
(
2019
).
181.
Pérez
,
V.
,
Lebrero
,
R.
, and
Muñoz
,
R.
, “
Comparative evaluation of biogas valorization into electricity/heat and poly(hydroxyalkanoates) in waste treatment plants: Assessing the influence of local commodity prices and current biotechnological limitations
,”
ACS Sustainable Chem. Eng.
8
,
7701
7709
(
2020a
).
182.
Pérez
,
V.
,
Mota
,
C. R.
,
Muñoz
,
R.
, and
Lebrero
,
R.
, “
Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society
,”
Chemosphere
255
,
126929
(
2020b
).
183.
Pérez
,
V.
,
Pascual
,
A.
,
Rodrigo
,
A.
,
García Torreiro
,
M.
,
Latorre-Sánchez
,
M.
,
Coll Lozano
,
C.
,
Moreno
,
A. D.
,
Oliva-Dominguez
,
J. M.
,
Serna-Maza
,
A.
,
Herrero García
,
N.
,
González Granados
,
I.
,
Roldan-Aguayo
,
R.
,
Ovejero-Roncero
,
D.
,
Molto Marin
,
J. L.
,
Smith
,
M.
,
Musinovic
,
H.
,
Raingué
,
A.
,
Belard
,
L.
,
Pascual
,
C.
,
Lebrero
,
R.
,
Muñoz
,
R.
,
Bhaskar
,
T.
,
Pandey
,
A.
,
Rene
,
E. R.
, and
Tsang
,
D.
,
Waste Biorefinery
(
Elsevier
,
2020c
).
184.
Petravić-Tominac
,
V.
,
Nastav
,
N.
,
Buljubašić
,
M.
, and
Šantek
,
B.
, “
Current state of biogas production in Croatia
,”
Energy, Sustainability Soc.
10
,
8
(
2020
).
185.
Pick
,
D.
,
Dieterich
,
M.
, and
Heintschel
,
S.
, “
Biogas production potential from economically usable green waste
,”
Sustainability
4
,
682
702
(
2012
).
186.
Pieja
,
A. J.
,
Morse
,
M. C.
, and
Cal
,
A. J.
, “
Methane to bioproducts: The future of the bioeconomy?
,”
Curr. Opin. Chem. Biol.
41
,
123
(
2017
).
187.
Poeschl
,
M.
,
Ward
,
S.
, and
Owende
,
P.
, “
Environmental impacts of biogas deployment – Part II: Life cycle assessment of multiple production and utilization pathways
,”
J. Cleaner Prod.
24
,
184
201
(
2012
).
188.
Poppe
,
J. K.
,
Fernandez-Lafuente
,
R.
,
Rodrigues
,
R. C.
, and
Ayub
,
M. A. Z.
, “
Enzymatic reactors for biodiesel synthesis: Present status and future prospects
,”
Biotechnol. Adv.
33
,
511
525
(
2015
).
189.
Porto
,
B. H. C.
,
Soares
,
J. P. G.
,
Rodrigues
,
G. S.
,
Junqueira
,
A. M. R.
,
Caldeira-Pires
,
A. d. A.
,
Martinez
,
D. G.
, and
Kunz
,
A.
, “
Socioenvironmental impacts of biogas production in a cooperative agroenergy condominium
,”
Biomass Bioenergy
151
,
106158
(
2021
).
190.
Pöschl
,
M.
,
Ward
,
S.
, and
Owende
,
P.
, “
Evaluation of energy efficiency of various biogas production and utilization pathways
,”
Appl. Energy
87
,
3305
3321
(
2010
).
191.
Pose-Boirazian
,
T.
,
Eibes
,
G.
,
Barreiro-Piñeiro
,
N.
,
Díaz-Jullien
,
C.
,
Lema
,
J. M.
, and
Martínez-Costas
,
J.
, “
Chemical and thermal stabilization of CotA laccase via a novel one-step expression and immobilization in muNS-Mi nanospheres
,”
Sci. Rep.
11
,
2802
(
2021
).
192.
Prask
,
H.
,
Szlachta
,
J.
,
Fugol
,
M.
,
Kordas
,
L.
,
Lejman
,
A.
,
Tuznik
,
F.
, and
Tuznik
,
F.
, “
Sustainability biogas production from ensiled plants consisting of the transformation of the digestate into a valuable organic-mineral granular fertilizer
,”
Sustainability
10
,
585
(
2018
).
193.
Rabbat
,
C.
,
Awad
,
S.
,
Villot
,
A.
,
Rollet
,
D.
, and
Andrès
,
Y.
, “
Sustainability of biomass-based insulation materials in buildings: Current status in France, end-of-life projections and energy recovery potentials
,”
Renewable Sustainable Energy Rev.
156
,
111962
(
2022
).
194.
Rafiee
,
A.
,
Khalilpour
,
K. R.
,
Prest
,
J.
, and
Skryabin
,
I.
, “
Biogas as an energy vector
,”
Biomass Bioenergy
144
,
105935
(
2021
).
195.
Raihan
,
A.
, “
A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors
,”
J. Environ. Sci. Econ.
2
,
36
58
(
2023
).
196.
Rajendiran
,
N.
,
Ganesan
,
S.
,
Velmurugan
,
N.
, and
Venkatachalam
,
S. S.
, “
Synergistic effect of biogas production from co-digestion of fish and vegetable market wastes and kinetic modelling
,”
Biomass Convers. Biorefin.
(published online) (
2022
).
197.
Ramírez-Arpide
,
F. R.
,
Demirer
,
G. N.
,
Gallegos-Vázquez
,
C.
,
Hernández-Eugenio
,
G.
,
Santoyo-Cortés
,
V. H.
, and
Espinosa-Solares
,
T.
, “
Life cycle assessment of biogas production through anaerobic co-digestion of nopal cladodes and dairy cow manure
,”
J. Cleaner Prod.
172
,
2313
2322
(
2018
).
198.
Rani
,
M.
,
Shanker
,
U.
, and
Chaurasia
,
A. K.
, “
Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: Degradation of alizarin red S dye
,”
J. Environ. Chem. Eng.
5
,
2730
2739
(
2017
).
199.
Rashama
,
C.
,
Ijoma
,
G.
, and
Matambo
,
T.
, “
Biogas generation from by-products of edible oil processing: A review of opportunities, challenges and strategies
,”
Biomass Convers. Biorefin.
9
,
803
826
(
2019
).
200.
Rasheed
,
R.
,
Tahir
,
F.
,
Yasar
,
A.
,
Sharif
,
F.
,
Tabinda
,
A. B.
,
Ahmad
,
S. R.
,
Wang
,
Y.
, and
Su
,
Y.
, “
Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system
,”
Renewable Energy
185
,
1261
1271
(
2022
).
201.
Rasi
,
S.
,
Läntelä
,
J.
, and
Rintala
,
J.
, “
Trace compounds affecting biogas energy utilisation – A review
,”
Energy Convers. Manage.
52
,
3369
3375
(
2011
).
202.
Reinelt
,
T.
,
McCabe
,
B. K.
,
Hill
,
A.
,
Harris
,
P.
,
Baillie
,
C.
, and
Liebetrau
,
J.
, “
Field measurements of fugitive methane emissions from three Australian waste management and biogas facilities
,”
Waste Manage.
137
,
294
303
(
2022
).
203.
Ren
,
L.
,
Huang
,
S.
,
Fan
,
W.
, and
Liu
,
T.
, “
One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method
,”
Appl. Surf. Sci.
258
,
1132
(
2011
).
204.
Riva
,
C.
,
Schievano
,
A.
,
D'Imporzano
,
G.
, and
Adani
,
F.
, “
Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy
,”
Waste Manage.
34
,
1429
1435
(
2014
).
205.
Rodrigues
,
A. F. S.
, “
A importância da autoclave para os estabelecimentos de saúde [The importance of autoclave for health establishments]
,”
Rev. Brass. Edu. Saúde
4
,
138
144
(
2019
).
206.
Rodrigues
,
A. F. S.
,
da Silva
,
A. F.
,
da Silva
,
F. L. B.
,
dos Santos
,
K. M.
,
de Oliveira
,
M. P.
,
Nobre
,
M. M. R.
,
Catumba
,
B. D.
,
Sales
,
M. B.
,
Silva
,
A. R. M.
,
Braz
,
A. K. S.
,
Cavalcante
,
A. L. G.
,
Alexandre
,
J. Y. N. H.
,
Junior
,
P. G. S.
,
Valério
,
R. B. R.
,
de Castro Bizerra
,
V.
, and
do Santos
,
J. C. S.
, “
A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes
,”
Process Biochem.
126
,
272
291
(
2023
).
207.
Rodríguez Couto
,
S.
and
Sanromán
,
M. A.
, “
Application of solid-state fermentation to ligninolytic enzyme production
,”
Biochem. Eng. J.
22
,
211
219
(
2005
).
208.
Rodríguez
,
R.
,
Espada
,
J. J.
,
Moreno
,
J.
,
Vicente
,
G.
,
Bautista
,
L. F.
,
Morales
,
V.
,
Sánchez-Bayo
,
A.
, and
Dufour
,
J.
, “
Environmental analysis of Spirulina cultivation and biogas production using experimental and simulation approach
,”
Renewable Energy
129
,
724
732
(
2018
).
209.
Rodríguez-Soler
,
R.
, Uribe-Toril, J., and De Pablo Valenciano, J., “Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool,”
Land Use Policy
97
,
104787
(
2020
).
210.
Rostkowski
,
K. H.
,
Criddle
,
C. S.
, and
Lepech
,
M. D.
, “
Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: Biogas-to-bioplastic (and back)
,”
Environ. Sci. Technol.
46
,
9822
(
2012
).
211.
Ruoso
,
A. C.
,
Dalla Nora
,
M.
,
Siluk
,
J. C. M.
, and
Ribeiro
,
J. L. D.
, “
The impact of landfill operation factors on improving biogas generation in Brazil
,”
Renewable Sustainable Energy Rev.
154
,
111868
(
2022
).
212.
Russo
,
V.
and
von Blottnitz
,
H.
, “
Potentialities of biogas installation in South African meat value chain for environmental impacts reduction
,”
J. Cleaner Prod.
153
,
465
473
(
2017
).
213.
Saddique
,
Z.
,
Imran
,
M.
,
Javaid
,
A.
,
Kanwal
,
F.
,
Latif
,
S.
,
Santos
,
J. C. S.
,
dos Kim
,
T. H.
, and
Boczkaj
,
G.
, “
Bismuth-based nanomaterials-assisted photocatalytic water splitting for sustainable hydrogen production
,”
Int. J. Hydrogen Energy
52
,
594
611
(
2024
).
214.
Salama
,
W.
and
Abdelsalam
,
E.
, “
Biogas production by anaerobic fermentation of hotel food wastes
,”
Egypt. J. Bot.
60
,
611
619
(
2020
).
215.
Sales
,
M. B.
,
Borges
,
P. T.
,
Ribeiro Filho
,
M. N.
,
Miranda da Silva
,
L. R.
,
Castro
,
A. P.
,
Sanders Lopes
,
A. A.
,
Chaves de Lima
,
R. K.
,
de Sousa Rios
,
M. A.
, and
dos Santos
,
J. C. S.
, “
Sustainable feedstocks and challenges in biodiesel production: An advanced bibliometric analysis
,”
Bioengineering
9
,
539
(
2022
).
216.
Sales
,
M. B.
,
Neto
,
J. G. L.
,
De Sousa Braz
,
A. K.
,
De Sousa Junior
,
P. G.
,
Melo
,
R. L. F.
,
Valério
,
R. B. R.
,
Serpa
,
J. d. F.
,
Da Silva Lima
,
A. M.
,
De Lima
,
R. K. C.
,
Guimarães
,
A. P.
,
de Souza
,
M. C. M.
,
Lopes
,
A. A. S.
,
Rios
,
M. A. d. S.
,
Serafim
,
L. F.
, and
dos Santos
,
J. C. S.
, “
Trends and opportunities in enzyme biosensors coupled to metal-organic frameworks (MOFs): An advanced bibliometric analysis
,”
Electrochem
4
,
181
211
(
2023
).
217.
Salvador
,
R.
,
Barros
,
M. V.
,
Do Rosário
,
J. G. D. P.
,
Piekarski
,
C. M.
,
da Luz
,
L. M.
, and
de Francisco
,
A. C.
, “
Life cycle assessment of electricity from biogas: A systematic literature review
,”
Environ. Prog. Sustainable Energy
38
,
13133
(
2019
).
218.
Samer
,
M.
,
Abdelsalam
,
E. M.
,
Mohamed
,
S.
,
Elsayed
,
H.
, and
Attia
,
Y.
, “
Impact of photoactivated cobalt oxide nanoparticles addition on manure and whey for biogas production through dry anaerobic co-digestion
,”
Environ. Dev. Sustainable
24
,
7776
7793
(
2022
).
219.
Santarelli
,
M.
,
Briesemeister
,
L.
,
Gandiglio
,
M.
,
Herrmann
,
S.
,
Kuczynski
,
P.
,
Kupecki
,
J.
,
Lanzini
,
A.
,
Llovell
,
F.
,
Papurello
,
D.
,
Spliethoff
,
H.
,
Swiatkowski
,
B.
,
Torres-Sanglas
,
J.
, and
Vega
,
L. F.
, “
Carbon recovery and re-utilization (CRR) from the exhaust of a solid oxide fuel cell (SOFC): Analysis through a proof-of-concept
,”
J. CO2 Util.
18
,
206
221
(
2017
).
220.
Sarkar
,
O.
,
Agarwal
,
M.
,
Naresh Kumar
,
A.
, and
Venkata Mohan
,
S.
, “
Retrofitting heterotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and bio-oil production encompassing biorefinery
,”
Bioresour. Technol.
178
,
132
138
(
2015
).
221.
Sarker
,
B. R.
,
Wu
,
B.
, and
Paudel
,
K. P.
, “
Modeling and optimization of a supply chain of renewable biomass and biogas: Processing plant location
,”
Appl. Energy
239
,
343
355
(
2019
).
222.
Satar
,
R.
and
Husain
,
Q.
, “
Applications of Celite-adsorbed white radish (Raphanus sativus) peroxidase in batch process and continuous reactor for the degradation of reactive dyes
,”
Biochem. Eng. J.
46
,
96
104
(
2009
).
223.
Sempere
,
F.
,
Sánchez
,
C.
,
Baeza-Serrano
,
Á.
, and
Montoya
,
T.
, “
Anoxic desulphurisation of biogas from full-scale anaerobic digesters in suspended biomass bioreactors valorising previously nitrified digestate centrate
,”
J. Hazard. Mater.
439
,
129641
(
2022
).
224.
Sgroi
,
F.
,
Di Trapani
,
A. M.
,
Foderà
,
M.
,
Testa
,
R.
, and
Tudisca
,
S.
, “
Economic performance of biogas plants using giant reed silage biomass feedstock
,”
Ecol. Eng.
81
,
481
487
(
2015a
).
225.
Sgroi
,
F.
,
Foderà
,
M.
,
Trapani
,
A. M. D.
,
Tudisca
,
S.
, and
Testa
,
R.
, “
Economic evaluation of biogas plant size utilizing giant reed
,”
Renewable Sustainable Energy Rev.
49
,
403
409
(
2015b
).
226.
Shahzad
,
K.
,
Kettl
,
K. H.
,
Titz
,
M.
,
Koller
,
M.
,
Schnitzer
,
H.
, and
Narodoslawsky
,
M.
, “
Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources
,”
Clean Technol. Environ. Policy
15
,
525
(
2013
).
227.
Shahzad
,
K.
,
Narodoslawsky
,
M.
,
Sagir
,
M.
,
Ali
,
N.
,
Ali
,
S.
,
Rashid
,
M. I.
,
Ismail
,
I. M. I.
, and
Koller
,
M.
, “
Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production
,”
Waste Manage.
67
,
73
(
2017
).
228.
Shams Esfandabadi
,
Z.
,
Ravina
,
M.
,
Diana
,
M.
, and
Zanetti
,
M. C.
, “
Conceptualizing environmental effects of carsharing services: A system thinking approach
,”
Sci. Total Environ.
745
,
141169
(
2020
).
229.
Shastri
,
Y.
,
Rodríguez
,
L.
,
Hansen
,
A.
, and
Ting
,
K. C.
, “
Agent-based analysis of biomass feedstock production dynamics
,”
Bioenergy Res.
4
,
258
275
(
2011
).
230.
Sheng
,
K. X.
,
Xu
,
Y. X.
,
Li
,
C.
, and
Shi
,
G. Q.
, “
High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide
,”
New Carbon Mater.
26
,
9
(
2011
).
231.
Sibiya
,
N. T.
,
Oboirien
,
B.
,
Lanzini
,
A.
,
Gandiglio
,
M.
,
Ferrero
,
D.
,
Papurello
,
D.
, and
Bada
,
S. O.
, “
Effect of different pre-treatment methods on gasification properties of grass biomass
,”
Renewable Energy
170
,
875
883
(
2021
).
232.
Siegmeier
,
T.
,
Blumenstein
,
B.
, and
Möller
,
D.
, “
Farm biogas production in organic agriculture: System implications
,”
Agric. Syst.
139
,
196
209
(
2015
).
233.
Singh
,
P. K.
,
Mohanty
,
P.
,
Mishra
,
S.
, and
Adhya
,
T. K.
, “
Food waste valorisation for biogas-based bioenergy production in circular bioeconomy: Opportunities, challenges, and future developments
,”
Front. Energy Res.
10
,
903775
(
2022
).
234.
Sliem
,
M. A.
,
El-Ansary
,
S.
,
Soliman
,
W.
, and
Badr
,
Y.
, “
Enhancing biogas production of cow dung during anaerobic digestion using nanoferrites
,”
Biomass Convers. Biorefin.
12
,
4139
4146
(
2022
).
235.
Slimane
,
K.
,
Fathya
,
S.
,
Assia
,
K.
, and
Hamza
,
M.
, “
Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: Process stability and biogas production
,”
Energy Procedia
50
,
57
63
(
2014
).
236.
Souza Neto
,
J. J. d.
,
Fonsêca Feitosa
,
B.
,
Candeia
,
R. A.
,
Cavalcanti
,
M. T.
, and
Lima
,
A. S.
, “
Generation of biogas and thermal energy at the bolo das oliveiras agroindustry, Pombal, Paraíba, Brazil
,”
Nativa
11
,
108
114
(
2023
).
237.
Spagnolo
,
S.
,
Chinellato
,
G.
,
Cristiano
,
S.
,
Zucaro
,
A.
, and
Gonella
,
F.
, “
Sustainability assessment of bioenergy at different scales: An emergy analysis of biogas power production
,”
J. Cleaner Prod.
277
,
124038
(
2020
).
238.
Sridhar
,
A.
,
Kapoor
,
A.
,
Senthil Kumar
,
P.
,
Ponnuchamy
,
M.
,
Balasubramanian
,
S.
, and
Prabhakar
,
S.
, “
Conversion of food waste to energy: A focus on sustainability and life cycle assessment
,”
Fuel
302
,
121069
(
2021
).
239.
Stern
,
T.
,
Ledl
,
C.
,
Braun
,
M.
,
Hesser
,
F.
, and
Schwarzbauer
,
P.
, “
Biorefineries' impacts on the Austrian forest sector: A system dynamics approach
,”
Technol. Forecast. Soc. Change
91
,
311
326
(
2015
).
240.
Sumardiono
,
S.
,
Adisukmo
,
G.
,
Hanif
,
M.
,
Budiyono
,
B.
, and
Cahyono
,
H.
, “
Effects of pretreatment and ratio of solid sago waste to rumen on biogas production through solid-state anaerobic digestion
,”
Sustainability
13
,
7491
(
2021
).
241.
Sundberg
,
C.
,
Al-Soud
,
W. A.
,
Larsson
,
M.
,
Alm
,
E.
,
Yekta
,
S. S.
,
Svensson
,
B. H.
,
Sørensen
,
S. J.
, and
Karlsson
,
A.
, “
454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters
,”
FEMS Microbiol. Ecol.
85
,
612
626
(
2013
).
242.
Tagne
,
R. F. T.
,
Dong
,
X.
,
Anagho
,
S. G.
,
Kaiser
,
S.
, and
Ulgiati
,
S.
, “
Technologies, challenges and perspectives of biogas production within an agricultural context. The case of China and Africa
,”
Environ. Dev. Sustainable
23
,
14799
14826
(
2021
).
243.
Taherzadeh
,
M. J.
and
Karimi
,
K.
, “
Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review
,”
Int. J. Mol. Sci.
9
,
1621
1651
(
2008
).
244.
Toftgaard Pedersen
,
A.
,
de Carvalho
,
T. M.
,
Sutherland
,
E.
,
Rehn
,
G.
,
Ashe
,
R.
, and
Woodley
,
J. M.
, “
Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis
,”
Biotechnol. Bioeng.
114
,
1222
1230
(
2017
).
245.
Toledo-Cervantes
,
A.
,
Morales
,
T.
,
González
,
Á.
,
Muñoz
,
R.
, and
Lebrero
,
R.
, “
Long-term photosynthetic CO2 removal from biogas and flue-gas: Exploring the potential of closed photobioreactors for high-value biomass production
,”
Sci. Total Environ.
640–641
,
1272
1278
(
2018
).
246.
Tshemese
,
Z.
,
Deenadayalu
,
N.
,
Linganiso
,
L. Z.
, and
Chetty
,
M.
, “
An overview of biogas production from anaerobic digestion and the possibility of using sugarcane wastewater and municipal solid waste in a South African context
,”
Appl. Syst. Innovation
6
,
13
(
2023
).
247.
Tufaner
,
F.
and
Demirci
,
Y.
, “
Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models
,”
Clean Technol. Environ. Policy
22
,
713
724
(
2020
).
248.
Udaeta
,
M. E. M.
,
de S. Medeiros
,
G. A.
,
da Silva
,
V. O.
, and
Galvão
,
L. C. R.
, “
Basic and procedural requirements for energy potential from biogas of sewage treatment plants
,”
J. Environ. Manage.
236
,
380
387
(
2019
).
249.
Uddin
,
M. M.
and
Wright
,
M. M.
, “
Anaerobic digestion fundamentals, challenges, and technological advances
,”
Phys. Sci. Rev.
8
,
2819
(
2023
).
250.
Unuofin
,
J. O.
, “
Treasure from dross: Application of agroindustrial wastes-derived thermo-halotolerant laccases in the simultaneous bioscouring of denim fabric and decolorization of dye bath effluents
,”
Ind. Crops Prod
147
,
112251
(
2020
).
251.
Valenti
,
F.
,
Arcidiacono
,
C.
,
Chinnici
,
G.
,
Cascone
,
G.
, and
Porto
,
S. M. C.
, “
Quantification of olive pomace availability for biogas production by using a GIS-based model
,”
Biofuels, Bioprod. Biorefin.
11
,
784
797
(
2017
).
252.
Valentino
,
F.
,
Gottardo
,
M.
,
Micolucci
,
F.
,
Pavan
,
P.
,
Bolzonella
,
D.
,
Rossetti
,
S.
, and
Majone
,
M.
, “
Organic fraction of municipal solid waste recovery by conversion into added-value polyhydroxyalkanoates and biogas
,”
ACS Sustainable Chem. Eng.
6
,
16375
(
2018
).
253.
van den Oever
,
A. E. M.
,
Cardellini
,
G.
,
Sels
,
B. F.
, and
Messagie
,
M.
, “
Life cycle environmental impacts of compressed biogas production through anaerobic digestion of manure and municipal organic waste
,”
J. Cleaner Prod.
306
,
127156
(
2021
).
254.
van Eck
,
N. J.
and
Waltman
,
L.
, “
Software survey: VOSviewer, a computer program for bibliometric mapping
,”
Scientometrics
84
,
523
538
(
2010
).
255.
Van Stappen
,
F.
,
Mathot
,
M.
,
Decruyenaere
,
V.
,
Loriers
,
A.
,
Delcour
,
A.
,
Planchon
,
V.
,
Goffart
,
J.-P.
, and
Stilmant
,
D.
, “
Consequential environmental life cycle assessment of a farm-scale biogas plant
,”
J. Environ. Manage.
175
,
20
32
(
2016
).
256.
Vardar
,
S.
,
Demirel
,
B.
, and
Onay
,
T. T.
, “
Degradability of bioplastics in anaerobic digestion systems and their effects on biogas production: A review
,”
Rev. Environ. Sci. Biotechnol.
21
,
205
223
(
2022
).
257.
Vidal-Barrero
,
F.
,
Baena-Moreno
,
F. M.
,
Preciado-Cárdenas
,
C.
,
Villanueva-Perales
,
Á.
, and
Reina
,
T. R.
, “
Hydrogen production from landfill biogas: Profitability analysis of a real case study
,”
Fuel
324
,
124438
(
2022
).
258.
Volschan Junior
,
I.
,
de Almeida
,
R.
, and
Cammarota
,
M. C.
, “
A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants
,”
J. Water Process Eng.
40
,
101857
(
2021
).
259.
VOSviewer software, version 1.6.20, developed at Leiden University’s Centre for Science and Technology Studies (CWTS), Leiden University, the Netherlands (released October 31, 2023).
260.
Wang
,
F.
,
Zhang
,
C.
, and
Huo
,
S.
, “
Influence of fluid dynamics on anaerobic digestion of food waste for biogas production
,”
Environ. Technol.
38
,
1160
1168
(
2017
).
261.
Wang
,
G.
,
Zhang
,
J.
,
Kou
,
X.
,
Wang
,
S.
,
Liu
,
J.
,
Xu
,
R.
,
Han
,
G.
,
Wu
,
L.
, and
Zhu
,
L.
, “
Zizania aquatica–duck ecosystem with recycled biogas slurry maintained crop yield
,”
Nutr. Cycling Agroecosyst.
115
,
331
345
(
2019
).
262.
Wang
,
Z.
,
Peng
,
X.
,
Xia
,
A.
,
Shah
,
A. A.
,
Huang
,
Y.
,
Zhu
,
X.
,
Zhu
,
X.
, and
Liao
,
Q.
, “
The role of machine learning to boost the bioenergy and biofuels conversion
,”
Bioresour. Technol.
343
,
126099
(
2022
).
263.
Weiland
,
P.
, “
Production and energetic use of biogas from energy crops and wastes in Germany
,”
Appl. Biochem. Biotechnol.
109
,
263
274
(
2003
).
264.
Weiland
,
P.
, “
Biogas production: Current state and perspectives
,”
Appl. Microbiol. Biotechnol.
85
,
849
860
(
2010
).
265.
Wellinger
,
A.
,
Murphy
,
J.
, and
Baxter
,
D.
,
The Biogas Handbook: Science
,
Production and Applications
(
Elsevier
,
2013
).
266.
Werkneh
,
A. A.
, “
Biogas impurities: Environmental and health implications, removal technologies and future perspectives
,”
Heliyon
8
,
e10929
(
2022
).
267.
Wiles
,
C.
and
Watts
,
P.
, “
Continuous flow reactors: A perspective
,”
Green Chem.
14
,
38
54
(
2012
).
268.
Willis
,
J.
,
Stone
,
L.
,
Durden
,
K.
,
Beecher
,
N.
,
Hemenway
,
C.
, and
Greenwood
,
R.
,
Barriers to Biogas Use for Renewable Energy
(
IWA Publishing
,
2012
).
269.
Winquist
,
E.
,
Rikkonen
,
P.
,
Pyysiäinen
,
J.
, and
Varho
,
V.
, “
Is biogas an energy or a sustainability product? - Business opportunities in the Finnish biogas branch
,”
J. Cleaner Prod.
233
,
1344
1354
(
2019
).
270.
Wong
,
J. K. H.
,
Tan
,
H. K.
,
Lau
,
S. Y.
,
Yap
,
P. S.
, and
Danquah
,
M. K.
, “
Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: A review
,”
J. Environ. Chem. Eng.
7
,
103261
(
2019
).
271.
Wu
,
X. F.
,
Chen
,
G. Q.
,
Wu
,
X. D.
,
Yang
,
Q.
,
Alsaedi
,
A.
,
Hayat
,
T.
, and
Ahmad
,
B.
, “
Renewability and sustainability of biogas system: Cosmic exergy based assessment for a case in China
,”
Renewable Sustainable Energy Rev.
51
,
1509
1524
(
2015a
).
272.
Wu
,
X. F.
,
Yang
,
Q.
,
Xia
,
X. H.
,
Wu
,
T. H.
,
Wu
,
X. D.
,
Shao
,
L.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Chen
,
G. Q.
, “
Sustainability of a typical biogas system in China: Emergy-based ecological footprint assessment
,”
Ecol. Inf.
26
,
78
84
(
2015b
).
273.
Xu
,
J.
,
Lin
,
W.
,
Chen
,
X.
, and
Zhang
,
H.
, “
Review of unconventional natural gas liquefaction processes
,”
Front. Energy Res
10
,
915893
(
2022
).
274.
Yadvika
,
Santosh
,
Sreekrishnan
,
T. R.
,
Kohli
,
S.
, and
Rana
,
V.
, “
Enhancement of biogas production from solid substrates using different techniques––A review
,”
Bioresour. Technol.
95
,
1
10
(
2004
).
275.
Yang
,
S.
,
Svoronos
,
S. A.
, and
Pullammanappallil
,
P.
, “
Development of inexpensive, automatic, real-time measurement system for on-line methane content and biogas flowrate
,”
Waste Biomass Valorization
13
,
4839
4849
(
2022
).
276.
Yaqoob
,
H.
,
Teoh
,
Y. H.
,
Ud Din
,
Z.
,
Sabah
,
N. U.
,
Jamil
,
M. A.
,
Mujtaba
,
M. A.
, and
Abid
,
A.
, “
The potential of sustainable biogas production from biomass waste for power generation in Pakistan
,”
J. Cleaner Prod.
307
,
127250
(
2021
).
277.
Yu
,
Y.
,
Ramsay
,
J. A.
, and
Ramsay
,
B. A.
, “
On-line estimation of dissolved methane concentration during methanotrophic fermentations
,”
Biotechnol. Bioeng.
95
,
788
(
2006
).
278.
Zaidi
,
A. A.
,
Khan
,
S. Z.
,
Naseer
,
M. N.
,
Almohammadi
,
H.
,
Asif
,
M.
,
Abdul Wahab
,
Y.
,
Islam
,
M. A.
,
Johan
,
M. R.
, and
Hussin
,
H.
, “
Optimization of cobalt nanoparticles for biogas enhancement from Green Algae using response surface methodology
,”
Period. Polytech., Chem. Eng.
67
,
116
126
(
2023
).
279.
Zeng
,
A.-P.
and
Kaltschmitt
,
M.
, “
Green electricity and biowastes via biogas to bulk-chemicals and fuels: The next move toward a sustainable bioeconomy
,”
Eng. Life Sci.
16
,
211
221
(
2016
).
280.
Zhang
,
B.
and
Chen
,
B.
, “
Sustainability accounting of a household biogas project based on emergy
,”
Appl. Energy
194
,
819
831
(
2017
).
281.
Zhang
,
C.
,
Su
,
H.
,
Baeyens
,
J.
, and
Tan
,
T.
, “
Reviewing the anaerobic digestion of food waste for biogas production
,”
Renewable Sustainable Energy Rev.
38
,
383
392
(
2014
).
282.
Zhang
,
C.
,
Su
,
H.
,
Wang
,
Z.
,
Tan
,
T.
, and
Qin
,
P.
, “
Biogas by semi-continuous anaerobic digestion of food waste
,”
Appl. Biochem. Biotechnol.
175
,
3901
3914
(
2015
).
283.
Zhang
,
C.
,
Sun
,
Y.
,
Cao
,
T.
,
Wang
,
W.
,
Huo
,
S.
, and
Liu
,
Z.-H.
, “
Influence of organic load on biogas production and response of microbial community in anaerobic digestion of food waste
,”
Int. J. Hydrogen Energy
47
,
32849
32860
(
2022
).
284.
Zhang
,
J.
,
Ding
,
S.
,
Ge
,
Y.
, and
Li
,
Z.
, “
Enhanced removal of crystal violet in water using a facile-fabricated and environmental-friendly laccase immobilized composite membrane
,”
Process Biochemistry
98
,
122
130
(
2020
).
285.
Zhao
,
S.
,
Chen
,
W.
,
Liu
,
M.
,
Lv
,
H.
,
Liu
,
Y.
, and
Niu
,
Q.
, “
Biogas production, DOM performance and microbial community changes in anaerobic co-digestion of chicken manure with enteromorpha and green waste
,”
Biomass Bioenergy
158
,
106359
(
2022
).
286.
Zheng
,
Y.
,
Zhao
,
J.
,
Xu
,
F.
, and
Li
,
Y.
, “
Pretreatment of lignocellulosic biomass for enhanced biogas production
,”
Prog. Energy Combust. Sci.
42
,
35
53
(
2014
).
287.
Zhu
,
H. L.
,
Papurello
,
D.
,
Gandiglio
,
M.
,
Lanzini
,
A.
,
Akpinar
,
I.
,
Shearing
,
P. R.
,
Manos
,
G.
,
Brett
,
D. J. L.
, and
Zhang
,
Y. S.
, “
Study of H2S removal capability from simulated biogas by using waste-derived adsorbent materials
,”
Processes
8
,
1030
(
2020
).
You do not currently have access to this content.