Green hydrogen produced from renewable sources such as wind and photovoltaic (PV) power is expected to be pivotal in China's carbon neutrality target by 2060. This study assessed the potential production, levelized costs of hydrogen (LCOH), and the cost structure in diverse mainland Chinese provinces from 2020 to 2060. It considered various combinations of electrolysis technologies, specifically alkaline electrolysis (AE) and proton exchange membrane (PEM), in conjunction with green electricity sources. The analysis considers the technological learning effects of wind power, PV power, AE, and PEM. This study's primary conclusions and policy recommendations are as follows: (1) PV power would be the predominant energy for green hydrogen production in nearly all of mainland China, providing a potential 2.25–28 642.19 kt/yr hydrogen production in different provinces. (2) AE exhibits cost (with LCOH around 3.18–8.74 USD/kg) competitiveness than PEM (with LCOH around 3.33–10.24 USD/kg) for hydrogen production. Thus, policymakers are advised to focus on the PV power combined with the AE pathway for large-scale hydrogen production. PEM is suggested to be mainly used in cases with high power fluctuations and end devices. (3) The provinces (especially Inner Mongolia, Xinjiang, and Gansu Province) in the Northwest of China show the greatest potential (about 74.35%) and have the lowest LCOH (with around 3.18–4.78 USD/kg). However, these provinces are quite distant from existing energy demand hubs. Thus, decision-makers are advised to focus on developing long-distance transmission/transportation infrastructure for either green electricity or green hydrogen.

1.
A.
Rabiee
,
A.
Keane
, and
A.
Soroudi
, “
Green hydrogen: A new flexibility source for security constrained scheduling of power systems with renewable energies
,”
Int. J. Hydrogen Energy
46
,
19270
19284
(
2021
).
2.
A.
Velazquez Abad
and
P. E.
Dodds
, “
Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges
,”
Energy Policy
138
,
111300
(
2020
).
3.
International Energy Agency
, “
The future of hydrogen: Seizing today's opportunities
, ” Report (
International Energy Agency
,
2019
).
4.
A. M. M. I.
Qureshy
and
I.
Dincer
, “
Energy and exergy analyses of an integrated renewable energy system for hydrogen production
,”
Energy
204
,
117945
(
2020
).
5.
A.
Odenweller
,
F.
Ueckerdt
,
G. F.
Nemet
,
M.
Jensterle
, and
G.
Luderer
, “
Probabilistic feasibility space of scaling up green hydrogen supply
,”
Nat. Energy
7
,
854
865
(
2022
).
6.
H. Y.
Lin
,
Q. W.
Wu
,
X. Y.
Chen
,
X.
Yang
,
X. Y.
Guo
,
J. J.
Lv
,
T. G.
Lu
,
S. J.
Song
, and
M.
McElroy
, “
Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China
,”
Renewable Energy
173
,
569
580
(
2021
).
7.
J.
Li
,
S.
Chen
,
Y.
Wu
,
Q.
Wang
,
X.
Liu
,
L.
Qi
,
X.
Lu
, and
L.
Gao
, “
How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China
,”
Renewable Sustainable Energy Rev.
137
,
110626
(
2021
).
8.
International Renewable Energy Agency,
Green Hydrogen: A guide to policy making
,”
Report
(
International Renewable Energy Agency
,
2020
), https://www.irena.org/publications/2020/Nov/Green-hydrogen.
9.
J. L.
Fan
,
P. W.
Yu
,
K.
Li
,
M.
Xu
, and
X.
Zhang
, “
A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China
,”
Energy
242
,
123003
(
2022
).
10.
G. S.
Pan
,
W.
Gu
,
Q. R.
Hu
,
J. X.
Wang
,
F.
Teng
, and
G.
Strbac
, “
Cost and low-carbon competitiveness of electrolytic hydrogen in China
,”
Energy Environ. Sci.
14
,
4868
4881
(
2021
).
11.
K. J.
Arrow
, “
The economic implications of learning by doing
,”
Rev. Econ. Stud.
29
,
155
173
(
1962
).
12.
B.
Lane
,
J.
Reed
,
B.
Shaffer
, and
S.
Samuelsen
, “
Forecasting renewable hydrogen production technology shares under cost uncertainty
,”
Int. J. Hydrogen Energy
46
,
27293
27306
(
2021
).
13.
J. H.
Nicodemus
, “
Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV
,”
Energy Policy
120
,
100
109
(
2018
).
14.
D.
Mazzeo
,
M. S.
Herdem
,
N.
Matera
, and
J. Z.
Wen
, “
Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems
,”
Renewable Energy
200
,
360
378
(
2022
).
15.
G.
Kakoulaki
,
I.
Kougias
,
N.
Taylor
,
F.
Dolci
,
J.
Moya
, and
A.
Jager-Waldau
, “
Green hydrogen in Europe—A regional assessment: Substituting existing production with electrolysis powered by renewables
,”
Energy Convers. Manage.
228
,
113649
(
2021
).
16.
H. X.
Zhao
,
L. M.
Kamp
, and
Z.
Lukszo
, “
Exploring supply chain design and expansion planning of China's green ammonia production with an optimization-based simulation approach
,”
Int. J. Hydrogen Energy
46
,
32331
32349
(
2021
).
17.
S.
Rahmouni
,
B.
Negrou
,
N.
Settou
,
J.
Dominguez
, and
A.
Gouareh
, “
Prospects of hydrogen production potential from renewable resources in Algeria
,”
Int. J. Hydrogen Energy
42
,
1383
1395
(
2017
).
18.
L.
Al-Ghussain
,
A. D.
Ahmad
,
A. M.
Abubaker
, and
M. A.
Hassan
, “
Exploring the feasibility of green hydrogen production using excess energy from a country-scale 100% solar-wind renewable energy system
,”
Int. J. Hydrogen Energy
47
,
21613
21633
(
2022
).
19.
Z.
Abdin
,
A.
Zafaranloo
,
A.
Rafiee
,
W.
Merida
,
W.
Lipinski
, and
K. R.
Khalilpour
, “
Hydrogen as an energy vector
,”
Renewable Sustainable Energy Rev.
120
,
109620
(
2020
).
20.
C.
Acar
and
I.
Dincer
, “
Comparative assessment of hydrogen production methods from renewable and non-renewable sources
,”
Int. J. Hydrogen Energy
39
,
1
12
(
2014
).
21.
A.
Manzotti
,
E.
Quattrocchi
,
A.
Curcio
,
S. C. T.
Kwok
,
M.
Santarelli
, and
F.
Ciucci
, “
Membraneless electrolyzers for the production of low-cost, high-purity green hydrogen: A techno-economic analysis
,”
Energy Convers. Manage.
254
,
115156
(
2022
).
22.
Q. V.
Dinh
,
V. N.
Dinh
,
H.
Mosadeghi
,
P. H.
Todesco Pereira
, and
P. G.
Leahy
, “
A geospatial method for estimating the levelised cost of hydrogen production from offshore wind
,”
Int. J. Hydrogen Energy
48
,
15000
15013
(
2023
).
23.
D.
Franzmann
,
H.
Heinrichs
,
F.
Lippkau
,
T.
Addanki
,
C.
Winkler
,
P.
Buchenberg
,
T.
Hamacher
,
M.
Blesl
,
J.
Linßen
, and
D.
Stolten
, “
Green hydrogen cost-potentials for global trade
,”
Int. J. Hydrogen Energy
48
,
33062
33076
(
2023
).
24.
V.
Walter
,
L.
Göransson
,
M.
Taljegard
,
S.
Öberg
, and
M.
Odenberger
, “
Low-cost hydrogen in the future European electricity system—Enabled by flexibility in time and space
,”
Appl. Energy
330
,
120315
(
2023
).
25.
S.
Öberg
,
M.
Odenberger
, and
F.
Johnsson
, “
The cost dynamics of hydrogen supply in future energy systems—A techno-economic study
,”
Appl. Energy
328
,
120233
(
2022
).
26.
J.
Armijo
and
C.
Philibert
, “
Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina
,”
Int. J. Hydrogen Energy
45
,
1541
1558
(
2020
).
27.
J.
Janssen
,
M.
Weeda
,
R. J.
Detz
, and
B.
van der Zwaan
, “
Country-specific cost projections for renewable hydrogen production through off-grid electricity systems
,”
Appl. Energy
309
,
118398
(
2022
).
28.
C.
Chen
,
Y. S. Y.
Lu
, and
L.
Xing
, “
Levelling renewable power output using hydrogen-based storage systems: A techno-economic analysis
,”
J. Energy Storage
37
,
102413
(
2021
).
29.
A.
Liponi
,
G. F.
Frate
,
A.
Baccioli
,
L.
Ferrari
, and
U.
Desideri
, “
Impact of wind speed distribution and management strategy on hydrogen production from wind energy
,”
Energy
256
,
124636
(
2022
).
30.
C.
Martínez de León
,
C.
Ríos
, and
J. J.
Brey
, “
Cost of green hydrogen: Limitations of production from a stand-alone photovoltaic system
,”
Int. J. Hydrogen Energy
48
,
11885
11898
(
2023
).
31.
I.
Dincer
, “
Green methods for hydrogen production
,”
Int. J. Hydrogen Energy
37
,
1954
1971
(
2012
).
32.
H.
Wu
,
S.
Zhang
,
X.
Li
,
S.
Liu
, and
L.
Liang
, “
A multivariate coupled economic model study on hydrogen production by renewable energy combined with off-peak electricity
,”
Int. J. Hydrogen Energy
47
,
24481
24492
(
2022
).
33.
G.
Glenk
and
S.
Reichelstein
, “
Economics of converting renewable power to hydrogen
,”
Nat. Energy
4
,
216
222
(
2019
).
34.
I.
Sorrenti
,
Y.
Zheng
,
A.
Singlitico
, and
S.
You
, “
Low-carbon and cost-efficient hydrogen optimisation through a grid-connected electrolyser: The case of GreenLab skive
,”
Renewable Sustainable Energy Rev.
171
,
113033
(
2023
).
35.
C.
Johnston
,
M. H.
Ali Khan
,
R.
Amal
,
R.
Daiyan
, and
I.
MacGill
, “
Shipping the sunshine: An open-source model for costing renewable hydrogen transport from Australia
,”
Int. J. Hydrogen Energy
47
,
20362
20377
(
2022
).
36.
S.
Song
,
H.
Lin
,
P.
Sherman
,
X.
Yang
,
C. P.
Nielsen
,
X.
Chen
, and
M. B.
McElroy
, “
Production of hydrogen from offshore wind in China and cost-competitive supply to Japan
,”
Nat. Commun.
12
,
6953
(
2021
).
37.
L.
Sens
,
Y.
Piguel
,
U.
Neuling
,
S.
Timmerberg
,
K.
Wilbrand
, and
M.
Kaltschmitt
, “
Cost minimized hydrogen from solar and wind—Production and supply in the European catchment area
,”
Energy Convers. Manage.
265
,
115742
(
2022
).
38.
H.
Böhm
,
S.
Goers
, and
A.
Zauner
, “
Estimating future costs of power-to-gas—A component-based approach for technological learning
,”
Int. J. Hydrogen Energy
44
,
30789
30805
(
2019
).
39.
International Renewable Energy Agency,
Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5 °C climate goal
,”
Report
(
International Renewable Energy Agency
,
2020
), https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction.
40.
Q.
Tu
,
R.
Betz
,
J.
Mo
,
Y.
Fan
, and
Y.
Liu
, “
Achieving grid parity of wind power in China—Present levelized cost of electricity and future evolution
,”
Appl. Energy
250
,
1053
1064
(
2019
).
41.
Y. Z.
Wang
,
X. M.
Ou
, and
S.
Zhou
, “
Future cost trend of hydrogen production in China based on learning curve
,”
Clim. Change Res.
18
,
283
293
(
2022
) (in Chinese).
42.
J.
Huang
,
P.
Balcombe
, and
Z.
Feng
, “
Technical and economic analysis of different colours of producing hydrogen in China
,”
Fuel
337
,
127227
(
2023
).
43.
Z.
Luo
,
X.
Wang
,
H.
Wen
, and
A.
Pei
, “
Hydrogen production from offshore wind power in South China
,”
Int. J. Hydrogen Energy
47
,
24558
24568
(
2022
).
44.
Y.
Zhou
,
R.
Li
,
Z.
Lv
,
J.
Liu
,
H.
Zhou
, and
C.
Xu
, “
Green hydrogen: A promising way to the carbon-free society
,”
Chin. J. Chem. Eng.
43
,
2
13
(
2022
).
45.
X.
Meng
,
M.
Chen
,
A.
Gu
,
X.
Wu
,
B.
Liu
,
J.
Zhou
, and
Z.
Mao
, “
China's hydrogen development strategy in the context of double carbon targets
,”
Nat. Gas Ind. B
9
,
521
547
(
2022
).
46.
G.
Cheng
,
Y.
Yang
,
T.
Xiu
,
B.
Chen
,
T.
Zhao
,
X.
Wang
,
C.
Dong
, and
Y.
Zhao
, “
Analysis of hydrogen production potential from water electrolysis in China
,”
Energy Fuels
37
,
9220
9232
(
2023
).
47.
China Hydrogen Alliance
, “
China hydrogen energy and fuel cell industry development report 2020
,”
Report
(
China Hydrogen Alliance
,
2021
) (in Chinese), http://www.ev100plus.com/#/report.
48.
World Economic Forum
, “
Green hydrogen in China: A roadmap for progress
,”
Report
(
World Economic Forum
,
2023
), https://www.weforum.org/publications/green-hydrogen-in-china-a-roadmap-for-progress.
49.
W.
Liu
,
Y. M.
Wan
,
Y. L.
Xiong
, and
J.
Liu
, “
Outlook of low carbon and clean hydrogen in China under the goal of “carbon peak and neutrality”
Energy Storage Sci. Technol.
11
,
635
642
(
2022
) (in Chinese).
50.
Y.
Huang
and
S.
Liu
, “
Chinese green hydrogen production potential development: A provincial case study
,”
IEEE Access
8
,
171968
171976
(
2020
).
51.
X. Y.
Meng
,
A.
Gu
,
X. G.
Wu
,
L. L.
Zhou
,
J.
Zhou
,
B.
Liu
, and
Z. Q.
Mao
, “
Status quo of China hydrogen strategy in the field of transportation and international comparisons
,”
Int. J. Hydrogen Energy
46
,
28887
28899
(
2021
).
52.
International Energy Agency
, “
The future of hydrogen Seizing today's opportunities
,”
Report
(
International Energy Agency
,
2019
), www.iea.org.
53.
Y.
Gu
,
D. F.
Wang
,
Q. Q.
Chen
, and
Z. Y.
Tang
, “
Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: A case study in China
,”
Int. J. Hydrogen Energy
47
,
5085
5100
(
2022
).
54.
H.
Zhao
,
L. M.
Kamp
, and
Z.
Lukszo
, “
The potential of green ammonia production to reduce renewable power curtailment and encourage the energy transition in China
,”
Int. J. Hydrogen Energy
47
,
18935
18954
(
2022
).
55.
Z.
Zhen
,
Y.
Wang
,
Y.
Wang
,
X.
Wang
,
X.
Ou
, and
S.
Zhou
, “
Hydrogen production paths in China based on learning curve and discrete choice model
,”
J. Cleaner Prod.
415
,
137848
(
2023
).
56.
S.
Hu
,
B.
Guo
,
S.
Ding
,
F.
Yang
,
J.
Dang
,
B.
Liu
,
J.
Gu
,
J.
Ma
, and
M.
Ouyang
, “
A comprehensive review of alkaline water electrolysis mathematical modeling
,”
Appl. Energy
327
,
120099
(
2022
).
57.
B. S.
Zainal
,
P. J.
Ker
,
H.
Mohamed
,
H. C.
Ong
,
I. M. R.
Fattah
,
S. M. A.
Rahman
,
L. D.
Nghiem
, and
T. M. I.
Mahlia
, “
Recent advancement and assessment of green hydrogen production technologies
,”
Renewable Sustainable Energy Rev.
189
,
113941
(
2024
).
58.
A.
Buttler
and
H.
Spliethoff
, “
Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review
,”
Renewable Sustainable Energy Rev.
82
,
2440
2454
(
2018
).
59.
M.
El-Shafie
, “
Hydrogen production by water electrolysis technologies: A review
,”
Results Eng.
20
,
101426
(
2023
).
60.
M.
David
,
C.
Ocampo-Martínez
, and
R.
Sánchez-Peña
, “
Advances in alkaline water electrolyzers: A review
,”
J. Energy Storage
23
,
392
403
(
2019
).
61.
M.
Nasser
,
T. F.
Megahed
,
S.
Ookawara
, and
H.
Hassan
, “
A review of water electrolysis-based systems for hydrogen production using hybrid/solar/wind energy systems
,”
Environ. Sci. Pollut. Res. Int.
29
,
86994
87018
(
2022
).
62.
M.
Khalid Ratib
,
K. M.
Muttaqi
,
M. R.
Islam
,
D.
Sutanto
, and
A. P.
Agalgaonkar
, “
Electrical circuit modeling of proton exchange membrane electrolyzer: The state-of-the-art, current challenges, and recommendations
,”
Int. J. Hydrogen Energy
49
,
625
645
(
2024
).
63.
A. H.
Reksten
,
M. S.
Thomassen
,
S.
Møller-Holst
, and
K.
Sundseth
, “
Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development
,”
Int. J. Hydrogen Energy
47
,
38106
38113
(
2022
).
64.
Y.
Wang
,
C.
Wen
,
J.
Tu
,
Z.
Zhan
,
B.
Zhang
,
Q.
Liu
,
Z.
Zhang
,
H.
Hu
, and
T.
Liu
, “
The multi-scenario projection of cost reduction in hydrogen production by proton exchange membrane (PEM) water electrolysis in the near future (2020–2060) of China
,”
Fuel
354
,
129409
(
2023
).
65.
R. Y.
Kannah
,
S.
Kavitha
,
Preethi
,
O. P.
Karthikeyan
,
G.
Kumar
,
N. V.
Dai-Viet
, and
J. R.
Banu
, “
Techno-economic assessment of various hydrogen production methods—A review
,”
Bioresour. Technol.
319
,
124175
(
2021
).
66.
J.
Yan
,
Y.
Yang
,
P. E.
Campana
, and
J.
He
, “
City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China
,”
Nat. Energy
4
,
709
717
(
2019
).
67.
R.
Qiu
,
Q.
Liao
,
J. J.
Klemes
,
Y. T.
Liang
,
Z. C.
Guo
,
J. Y.
Chen
, and
H. R.
Zhang
, “
Roadmap to urban energy internet with wind electricity-natural gas Q4,6 nexus: Economic and environmental analysis
,”
Energy
245
,
123231
(
2022
).
68.
D.
Milani
,
A.
Kiani
, and
R.
McNaughton
, “
Renewable-powered hydrogen economy from Australia's perspective
,”
Int. J. Hydrogen Energy
45
,
24125
24145
(
2020
).
69.
O.
Gavaldà
,
A.
González
,
M.
Raya
,
M.
Owen
,
F.
Kemausuor
, and
P.
Arranz-Piera
, “
Life cycle cost analysis for industrial bioenergy projects: Development of a simulation tool and application to three demand sectors in Africa
,”
Energy Rep.
8
,
2908
2923
(
2022
).
70.
A.
Fathollahi
and
S. J.
Coupe
, “
Life cycle assessment (LCA) and life cycle costing (LCC) of road drainage systems for sustainability evaluation: Quantifying the contribution of different life cycle phases
,”
Sci. Total Environ.
776
,
145937
(
2021
).
71.
International Renewable Energy Agency
, “
Hydrogen from renewable power: Technology outlook for the energy transition
,”
Report
(
International Renewable Energy Agency
,
2018
), https://www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power.
72.
T.
Ma
,
A.
Grubler
, and
Y.
Nakamori
, “
Modeling technology adoptions for sustainable development under increasing returns, uncertainty, and heterogeneous agents
,”
Eur. J. Oper. Res.
195
,
296
306
(
2009
).
73.
G.
Aquila
,
W. T.
Nakamura
,
P. R.
Junior
,
L. C.
Souza Rocha
, and
E.
de Oliveira Pamplona
, “
Perspectives under uncertainties and risk in wind farms investments based on omega-LCOE approach: An analysis in São Paulo state, Brazil
,”
Renewable Sustainable Energy Rev.
141
,
110805
(
2021
).
74.
Y.
Wang
,
M.
Gao
,
J.
Wang
,
S.
Wang
,
Y.
Liu
,
J.
Zhu
, and
Z.
Tan
, “
Measurement and key influencing factors of the economic benefits for China's photovoltaic power generation: A LCOE-based hybrid model
,”
Renewable Energy
169
,
935
952
(
2021
).
75.
Fuel Cells and Hydrogen Joint Undertaking
, “
Study on the development of water electrolysis in the EU
,”
Report
(
Fuel Cells and Hydrogen Joint Undertaking
,
2015
), https://www.clean-hydrogen.europa.eu/media/publications/development-water-electrolysis-european-union_en.
76.
Lazard
, “
Levelized cost of energy: Version 16.0
,”
Report
(
Lazard
,
2023
), https://www.lazard.com/research-insights/2023-levelized-cost-of-energyplus/.
77.
R.
Bhandari
, “
Green hydrogen production potential in West Africa—Case of Niger
,”
Renewable Energy
196
,
800
811
(
2022
).
78.
Energy Transitions Commission
, “
Making the hydrogen economy possible: Accelerating clean hydrogen in an electrified economy
,”
Report
(
Energy Transitions Commission
,
2021
), https://www.energy-transitions.org/publications/making-clean-hydrogen-possible/.
79.
Gas Technology Institute
, “
Emerging and existing oxygen production technology scan and evaluation
,”
Report
(
Gas Technology Institute
,
2018
), https://cosia.ca/sites/default/files/attachments/22164-%20Oxygen%20Generation%20Technologies%20Review%20-%20Rev0.pdf.
80.
X.
Han
,
X.
Pan
,
H.
Yang
,
C.
Xu
,
X.
Ju
, and
X.
Du
, “
Dynamic output characteristics of a photovoltaic-wind-concentrating solar power hybrid system integrating an electric heating device
,”
Energy Convers. Manage.
193
,
86
98
(
2019
).
81.
Z.
Liu
,
W.
Zhang
,
C.
Zhao
, and
J.
Yuan
, “
The economics of wind power in China and policy implications
,”
Energies
8
,
1529
1546
(
2015
).
82.
G.
He
and
D. M.
Kammen
, “
Where, when and how much wind is available? A provincial-scale wind resource assessment for China
,”
Energy Policy
74
,
116
122
(
2014
).
83.
G.
He
and
D. M.
Kammen
, “
Where, when and how much solar is available? A provincial-scale solar resource assessment for China
,”
Renewable Energy
85
,
74
82
(
2016
).

Supplementary Material

You do not currently have access to this content.