The flow and output of a Savonius hydraulic turbine rotor were simulated using the lattice Boltzmann method (LBM). The rotor, characterized by a configuration featuring two semi-circular arc-shaped blades, operated at a Reynolds number of 1.1 × 105. The simulations were conducted in a two-dimensional domain, focusing on the incompressible flow within the cross-sectional area of the rotor perpendicular to its rotational axis. The LBM approach was coupled with a rotor rotation analysis. In the LBM framework, the non-orthogonal central moment model was employed for the precise computation of particle collisions. Additionally, the direct forcing method was used to consider the rotating blades and shaft. Consequently, the torque exerted on both advancing and returning blades and rotor output was successfully simulated. These simulations unveiled the inherently unsteady rotational behavior of the rotor, stemming from the variable torque acting upon the blades. Moreover, the computational results exhibited a notable agreement between the simulated flow pattern around the rotor and the experimental visualization. Furthermore, an approximately identical correlation between the rotor speed and power output was established, mirroring the experimental results. These findings underscore the robust applicability of LBM in facilitating the design and operational analysis of Savonius hydraulic turbines.

1.
S. J.
Williamson
,
B. H.
Stark
, and
J. D.
Booker
, “
Low head pico hydro turbine selection using a multi-criteria analysis
,”
Renewable Energy
61
,
43
50
(
2014
).
2.
I.
Loots
,
M.
van Dijk
,
B.
Barta
,
S. J.
van Vuuren
, and
J. N.
Bhagwan
, “
A review of low head hydropower technologies and applications in a South African context
,”
Renewable Sustainable Energy Rev.
50
,
1254
1268
(
2015
).
3.
K. V.
Alexandera
,
E. P.
Giddensb
, and
A. M.
Fullera
, “
Axial-flow turbines for low head microhydro systems
,”
Renewable Energy
34
,
35
47
(
2009
).
4.
T.
Ikeda
,
S.
Iio
, and
K.
Tatsuno
, “
Performance of nano-hydraulic turbine utilizing waterfalls
,”
Renewable Energy
35
,
293
300
(
2010
).
5.
B. H.
Stark
,
E.
Ando
, and
G.
Hartley
, “
Modelling and performance of a small siphonic system
,”
Renewable Energy
36
,
2451
2464
(
2011
).
6.
P.
Singh
and
F.
Nestmann
, “
Experimental investigation of the influence of blade height and blade number on the performance of low head axial flow turbines
,”
Renewable Energy
36
,
272
281
(
2011
).
7.
S.-S.
Yanga
,
S.
Derakhshanb
, and
F.-Y.
Konga
, “
Theoretical, numerical and experimental prediction of pump as turbine performance
,”
Renewable Energy
48
,
507
513
(
2012
).
8.
T.
Uchiyama
,
S.
Honda
, and
T.
Degawa
, “
Development of a propeller-type hollow micro-hydraulic turbine with excellent performance in passing foreign matter
,”
Renewable Energy
126
,
545
551
(
2018
).
9.
A.
McNabola
,
P.
Coughlan
,
L.
Corcoran
,
C.
Power
,
A. P.
Williams
,
I.
Harris
,
J.
Gallagher
, and
D.
Styles
, “
Energy recovery in the water industry using micro-hydropower: An opportunity to improve sustainability
,”
Water Policy
16
,
168
183
(
2014
).
10.
A. Q.
Al-Shetwi
, “
Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges
,”
Sci. Total Environ.
822
,
153645
(
2022
).
11.
J.
Du
,
Z.
Ge
,
W.
Hao
,
X.
Shi
,
F.
Yuan
,
W.
Yu
,
D.
Wang
, and
X.
Yang
, “
Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings
,”
Energy
256
,
124616
(
2022
).
12.
M.
Nakajima
,
S.
Iio
, and
T.
Ikeda
, “
Performance of double-step Savonius rotor for environmentally friendly hydraulic turbine
,”
J. Fluid Sci. Technol.
3
,
410
419
(
2008
).
13.
K.
Golecha
,
T. I.
Eldho
, and
S. V.
Prabhu
, “
Influence of the deflector plate on the performance of modified Savonius water turbine
,”
Appl. Energy
88
,
3207
3217
(
2011
).
14.
H.
Shikama
,
T.
Wang
,
T.
Yamagata
, and
N.
Fujisawa
, “
Experimental and numerical studies on the performance of a waterfall-type cross-flow hydraulic turbine
,”
Energy Sustainable Dev.
64
,
128
138
(
2021
).
15.
G.
Mehr
,
M.
Durali
,
M. H.
Khakrand
, and
H.
Hoghooghi
, “
A novel design and performance optimization methodology for hydraulic cross-flow turbines using successive numerical simulations
,”
Renewable Energy
169
,
1402
1421
(
2021
).
16.
M. H.
Sotoude
,
S. M.
Mirghavami
,
S. F.
Chini
, and
A.
Riasi
, “
Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades
,”
Renewable Energy
135
,
266
276
(
2019
).
17.
P. K.
Talukdar
,
V.
Kulkarni
, and
U. K.
Saha
, “
Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation
,”
Renewable Energy
127
,
158
167
(
2018
).
18.
E.
Satou
,
T.
Ikeda
,
T.
Uchiyama
,
T.
Okayama
,
T.
Miyazawa
,
K.
Takamure
, and
D.
Tsunashima
, “
Development of an undershot cross-flow hydraulic turbine resistant to snow and ice masses flowing in an installation canal
,”
Renewable Energy
200
,
146
153
(
2022
).
19.
T.
Uchiyama
,
H.
Fukuhara
,
S.
Iio
, and
T.
Ikeda
, “
Numerical simulation of water flow through a nano-hydraulic turbine of waterfall-type by particle method
,”
Int. J. Rotating Mach.
2013
,
473842
.
20.
T.
Uchiyama
,
S.
Uehara
,
S.
Iio
,
T.
Ikeda
, and
Y.
Ide
, “
Numerical simulation of water flow through nano-hydraulic turbine driven by rapid and shallow stream
,”
J. Energy Power Eng
8
,
1663
1672
(
2014
).
21.
T.
Uchiyama
,
S.
Uehara
,
H.
Fukuhara
,
S.
Iio
, and
T.
Ikeda
, “
Numerical study on the flow and performance of an open cross-flow mini-hydraulic turbine
,”
Proc. Inst. Mech. Eng., Part A
229
,
968
977
(
2015
).
22.
T.
Uchiyama
,
S.
Mizoguchi
,
S.
Iio
,
Y.
Katayama
, and
T.
Ikeda
, “
Effects of clearance between rotor and ground on the performance of an open cross-flow-type nano-hydraulic turbine
,”
J. Energy Power Eng.
10
,
465
473
(
2016
).
23.
S.
Koshizuka
,
A.
Nobe
, and
Y.
Oka
, “
Numerical analysis of breaking waves using the moving particle semi-implicit method
,”
Int. J. Numer. Method Fluids
26
,
751
769
(
1998
).
24.
A.
Khayyer
and
H.
Gotoh
, “
Development of CMPS method for accurate water-surface tracking in breaking waves
,”
Coastal Eng. J
50
,
179
207
(
2008
).
25.
G.-H.
Cottet
and
P. D.
Koumoutsakos
,
Vortex Methods: Theory and Practice
(
Cambridge University Press
,
New York
,
2000
).
26.
T.
Uchiyama
,
Y.
Yoshii
, and
H.
Hamada
, “
Direct numerical simulation of a turbulent channel flow by an improved vortex in cell method
,”
Int. J. Numer. Methods Heat Fluid Flow
24
,
103
123
(
2014
).
27.
T.
Uchiyama
, “
Numerical simulation of particle-laden gas flow by vortex in cell method
,”
Powder Technol.
235
,
376
385
(
2013
).
28.
V. L.
Nguyen
,
T.
Degawa
,
T.
Uchiyama
, and
K.
Takamure
, “
Numerical simulation of bubbly flow around a cylinder by semi-Lagrangian-Lagrangian method
,”
Int. J. Numer. Methods Heat Fluid Flow
29
,
4660
4683
(
2019
).
29.
V. L.
Nguyen
,
T.
Degawa
, and
T.
Uchiyama
, “
Numerical simulation of annular bubble plume by vortex in cell method
,”
Int. J. Numer. Methods Heat Fluid Flow
29
,
1103
1131
(
2019
).
30.
T.
Degawa
,
Q.
Gu
, and
T.
Uchiyama
, “
Numerical simulation of fluid forces on moving solid body by the vortex in cell method with volume penalization
,”
Aerosp. Sci. Technol.
94
,
105360
(
2019
).
31.
J. T.
Rasmussen
,
G.-H.
Cottet
, and
J. H.
Walther
, “
A multiresolution remeshed vortex-in-cell algorithm using patches
,”
J. Comput. Phys.
230
,
6742
6755
(
2011
).
32.
T.
Uchiyama
,
Q.
Gu
,
T.
Degawa
,
S.
Iio
,
T.
Ikeda
, and
K.
Takamure
, “
Numerical simulations of the flow and performance of a hydraulic Savonius turbine by the vortex in cell method with volume penalization
,”
Renewable Energy
157
,
482
490
(
2020
).
33.
E.
Kerikous
and
D.
Thevenin
, “
Optimal shape of thick blades for a hydraulic Savonius turbine
,”
Renewable Energy
134
,
629
638
(
2019
).
34.
K.
Takamure
,
T.
Uchiyama
,
H.
Wang
,
S.
Iio
, and
T.
Ikeda
, “
Vortex-in-cell simulation of the flow and performance of a Savonius hydraulic turbine with S-shaped blades
,”
J. Renewable Sustainable Energy
13
,
044501
(
2021
).
35.
H.
Maeyama
et al, “
Turbulent channel flow simulations using the lattice Boltzmann method with near-wall modeling on a non-body-fitted Cartesian grid
,”
Comput. Math. Appl.
93
,
20
31
(
2021
).
36.
M.
Geier
, “
Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion Part II: Application to flow around a sphere at drag crisis
,”
J. Comput. Phys
348
,
889
898
(
2017
).
37.
S.
Saito
, “
Numerical simulation of bubbly flows by the improved lattice Boltzmann method for incompressible two-phase flows
,”
Comput. Fluids
254
,
105797
(
2023
).
38.
X.
Li
et al, “
A mass-conserving lattice Boltzmann method for bubble behavior estimation
,”
Chem. Eng. Sci.
193
,
76
88
(
2019
).
39.
Y. P.
Sitompul
and
T.
Aoki
, “
A filtered cumulant lattice Boltzmann method for violent two-phase flows
,”
J. Comput. Phys.
390
,
93
120
(
2019
).
40.
T.
Inamuro
, “
Numerical simulation of bubble flows by the lattice Boltzmann method
,”
Future Gener. Comput. Syst.
20
,
959
964
(
2004
).
41.
A.
Fakhari
, “
A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades
,”
J. Comput. Phys.
341
,
22
43
(
2017
).
42.
T.
Seta
et al, “
Smoothed profile-lattice Boltzmann method for non-penetration and wetting boundary conditions in two and three dimensions
,”
Comput. Fluids
159
,
64
80
(
2017
).
43.
C.
Ma
et al, “
Numerical study on suppressing violent transient sloshing with single and double vertical baffles
,”
Ocean Eng.
223
,
108557
(
2021
).
44.
S.
Rullaud
, “
Actuator-line model in a lattice Boltzmann framework for wind turbine simulations
,”
J. Phys.: Conf. Ser.
1037
,
022023
(
2018
).
45.
H.
Asmuth
et al, “
Actuator line simulations of wind turbine wakes using the lattice Boltzmann method
,”
Wind Energy Sci.
5
,
623
645
(
2020
).
46.
J.
Feng
et al, “
Runaway characteristics of a prototype bulb turbine considering upper and lower reservoirs based on lattice Boltzmann method
,”
Renewable Energy
202
,
773
783
(
2023
).
47.
G.
Zhu
et al, “
Research on casualty characteristics of fish in tubular turbine based on IB-LBM method
,”
J. Phys.: Conf. Ser.
1549
,
042135
(
2020
).
48.
S.
Wang
et al, “
Lattice Boltzmann simulation of hydro-turbine blade hydrofoil in the exploitation of tidal current energy
,” in
29th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2010)
, Shanghai (
ASME
,
2010
).
49.
A.
Lipej
, “
Analysis of free surface flow in Pelton turbine using lattice Boltzmann method
,”
Mech. Eng. Sci. J.
39
,
25
32
(
2021
).
50.
M.
Grondeau
, “
Modelling the wake of a tidal turbine with upstream turbulence: LBM-LES versus Navier–Stokes LES
,”
Int. Mar. Energy J.
3
,
83
89
(
2020
).
51.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems
,”
J. Comput. Phys.
195
,
602
628
(
2004
).
52.
A.
De Rosis
, “
Non-orthogonal central moments relaxing to a discrete equilibrium: A D2Q9 lattice Boltzmann model
,”
Europhys. Lett.
116
,
44003
(
2017
).
53.
L.
Fei
and
K. H.
Luo
, “
Consistent forcing scheme in the cascaded lattice Boltzmann method
,”
Phys. Rev. E
96
,
053307
(
2017
).
54.
R.
Mereu
,
D.
Federici
,
G.
Ferrari
,
P.
Schito
, and
F.
Inzoli
, “
Parametric numerical study of Savonius wind turbine interaction in a linear array
,”
Renewable Energy
113
,
1320
1332
(
2017
).
55.
Y.
Chen
,
P.
Guo
,
D.
Zhang
,
K.
Chai
,
C.
Zhao
, and
J.
Li
, “
Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method
,”
Renewable Energy
193
,
832
842
(
2022
).
You do not currently have access to this content.