This paper introduces an innovative online state of charge (SOC) estimation method for lithium-ion batteries, designed to address the challenges of accurate and timely SOC estimation in electric vehicles under complex working conditions and computational limitations of on-board hardware. Central to this method is the concept of end-cloud collaboration, which harmonizes accuracy with real-time performance. The framework involves deploying a data-driven model on the cloud side for high-accuracy estimation, complemented by a fast model on the end side for real-time estimation. A crucial component of this system is the implementation of the extended Kalman filter on the end side, which fuses results from both ends to achieve high-accuracy and real-time online estimation. This method has been rigorously evaluated under various dynamic driving conditions and temperatures, demonstrating high accuracy, real-time performance, and robustness. The estimation results yield a root mean square error and mean absolute error of approximately 1.5% and 1%, respectively. Significantly, under the Cyber Hierarchy and Interactional Network framework, this method shows promising potential for extension to multi-state online cooperative estimation, opening avenues for advanced battery system management.

1.
X. L.
Gao
,
X. H.
Liu
,
W. L.
Xie
,
L. S.
Zhang
, and
S. C.
Yang
, “
Multiscale observation of Li plating for lithium-ion batteries
,”
Rare Met.
40
,
3038
3048
(
2021
).
2.
X.
Liu
,
L.
Zhang
,
H.
Yu
,
J.
Wang
,
J.
Li
,
K.
Yang
,
Y.
Zhao
,
H.
Wang
,
B.
Wu
,
N. P.
Brandon
, and
S.
Yang
, “
Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle
,”
Adv. Energy Mater.
12
,
2200889
(
2022
).
3.
H.
You
,
J.
Zhu
,
X.
Wang
,
B.
Jiang
,
H.
Sun
,
X.
Liu
,
X.
Wei
,
G.
Han
,
S.
Ding
,
H.
Yu
,
W.
Li
,
D. U.
Sauer
, and
H.
Dai
, “
Nonlinear health evaluation for lithium-ion battery within full-lifespan
,”
J. Energy Chem.
72
,
333
341
(
2022
).
4.
S.
Yang
,
R.
He
,
Z.
Zhang
,
Y.
Cao
,
X.
Gao
, and
X.
Liu
, “
CHAIN: Cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management
,”
Matter
3
,
27
41
(
2020
).
5.
L. S.
Zhang
,
X. L.
Gao
,
X. H.
Liu
,
Z. J.
Zhang
,
R.
Cao
,
H. C.
Cheng
,
M. Y.
Wang
,
X. Y.
Yan
, and
S. C.
Yang
, “
CHAIN: Unlocking informatics-aided design of Li metal anode from materials to applications
,”
Rare Met.
41
,
1477
1489
(
2022
).
6.
S.
Yang
,
Z.
Zhang
,
R.
Cao
,
M.
Wang
,
H.
Cheng
,
L.
Zhang
,
Y.
Jiang
,
Y.
Li
,
B.
Chen
,
H.
Ling
,
Y.
Lian
,
B.
Wu
, and
X.
Liu
, “
Implementation for a cloud battery management system based on the CHAIN framework
,”
Energy AI
5
,
100088
(
2021
).
7.
M. C.
Pang
,
K.
Yang
,
R.
Brugge
,
T.
Zhang
,
X.
Liu
,
F.
Pan
,
S.
Yang
,
A.
Aguadero
,
B.
Wu
,
M.
Marinescu
,
H.
Wang
, and
G. J.
Offer
, “
Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries
,”
Mater. Today
49
,
145
183
(
2021
).
8.
L.
Zhang
,
L.
Liu
,
X.
Gao
,
Y.
Pan
,
X.
Liu
, and
X.
Feng
, “
Modeling of Lithium plating in lithium ion batteries based on Monte Carlo method
,”
J. Power Sources
541
,
231568
(
2022
).
9.
Q.
Liu
and
Q.
Yu
, “
The lithium battery SOC estimation on square root unscented Kalman filter
,”
Energy Rep.
8
,
286
294
(
2022
).
10.
Y.
Xing
,
W.
He
,
M.
Pecht
, and
K. L.
Tsui
, “
State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
,”
Appl. Energy
113
,
106
115
(
2014
).
11.
S.
Zhang
,
X.
Guo
,
X.
Dou
, and
X.
Zhang
, “
A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery
,”
Sustainable Energy Technol. Assessments
40
,
100752
(
2020
).
12.
J.
Tian
,
C.
Chen
,
W.
Shen
,
F.
Sun
, and
R.
Xiong
, “
Deep learning framework for lithium-ion battery state of charge estimation: Recent advances and future perspectives
,”
Energy Storage Mater.
61
,
102883
(
2023
).
13.
G. L.
Plett
, “
Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs—Part 1, Background
,”
J. Power Sources
134
,
252
261
(
2004
).
14.
G. L.
Plett
, “
Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs—Part 2, Modeling identification
,”
J. Power Sources
134
(
2
),
262
276
(
2004
).
15.
G. L.
Plett
, “
Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs—Part 3, State parameter estimation
,”
J. Power Sources
134
,
277
292
(
2004
).
16.
X.
Renxin
,
H.
Yanwen
,
Z.
Wei
, and
C.
Zhaohui
, “
A novel approach to estimate the state of charge for lithium-ion battery under different temperatures incorporating open circuit voltage online identification
,”
J. Energy Storage
67
,
107509
(
2023
).
17.
C.
Ge
,
Y.
Zheng
, and
Y.
Yu
, “
State of charge estimation of lithium-ion battery based on improved forgetting factor recursive least squares-extended Kalman filter joint algorithm
,”
J. Energy Storage
55
,
105474
(
2022
).
18.
L.
Ling
,
D.
Sun
,
X.
Yu
, and
R.
Huang
, “
State of charge estimation of Lithium-ion batteries based on the probabilistic fusion of two kinds of cubature Kalman filters
,”
J. Energy Storage
43
,
103070
(
2021
).
19.
C.
Campestrini
,
S.
Kosch
, and
A.
Jossen
, “
Influence of change in open circuit voltage on the state of charge estimation with an extended Kalman filter
,”
J. Energy Storage
12
,
149
156
(
2017
).
20.
H.
He
,
X.
Zhang
,
R.
Xiong
,
Y.
Xu
, and
H.
Guo
, “
Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles
,”
Energy
39
,
310
318
(
2012
).
21.
Y.
Tian
,
J.
Wen
,
Y.
Yang
,
Y.
Shi
, and
J.
Zeng
, “
State-of-health prediction of lithium-ion batteries based on CNN-BiLSTM-AM
,”
Batteries
8
,
155
(
2022
).
22.
M. A.
Hannan
,
D. N. T.
How
,
M. S.
Hossain Lipu
,
P. J.
Ker
,
Z. Y.
Dong
,
M.
Mansur
, and
F.
Blaabjerg
, “
SOC estimation of Li-ion batteries with learning rate-optimized deep fully convolutional network
,”
IEEE Trans. Power Electron.
36
,
7349
7353
(
2021
).
23.
H.
Chaoui
and
C. C.
Ibe-Ekeocha
, “
State of charge and state of health estimation for lithium batteries using recurrent neural networks
,”
IEEE Trans. Veh. Technol.
66
,
8773
8783
(
2017
).
24.
E.
Chemali
,
P. J.
Kollmeyer
,
M.
Preindl
,
R.
Ahmed
, and
A.
Emadi
, “
Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries
,”
IEEE Trans. Ind. Electron.
65
,
6730
6739
(
2018
).
25.
Y.
Yang
,
L.
Zhao
,
Q.
Yu
,
S.
Liu
,
G.
Zhou
, and
W.
Shen
, “
State of charge estimation for lithium-ion batteries based on cross-domain transfer learning with feedback mechanism
,”
J. Energy Storage
70
,
108037
(
2023
).
26.
M.
Li
,
C.
Li
,
Q.
Zhang
,
W.
Liao
, and
Z.
Rao
, “
State of charge estimation of Li-ion batteries based on deep learning methods and particle-swarm-optimized Kalman filter
,”
J. Energy Storage
64
,
107191
(
2023
).
27.
A.
Bhattacharjee
,
A.
Verma
,
S.
Mishra
, and
T. K.
Saha
, “
Estimating state of charge for xEV batteries using 1D convolutional neural networks and transfer learning
,”
IEEE Trans. Veh. Technol.
70
,
3123
3135
(
2021
).
28.
E.
Buchicchio
,
A.
De Angelis
,
F.
Santoni
,
P.
Carbone
,
F.
Bianconi
, and
F.
Smeraldi
, “
Battery SOC estimation from EIS data based on machine learning and equivalent circuit model
,”
Energy
283
,
128461
(
2023
).
29.
L.
Mao
,
Q.
Hu
,
J.
Zhao
, and
X.
Yu
, “
State-of-charge of lithium-ion battery based on equivalent circuit model—Relevance vector machine fusion model considering varying ambient temperatures
,”
Measurement
221
,
113487
(
2023
).
30.
M.
Ragone
,
V.
Yurkiv
,
A.
Ramasubramanian
,
B.
Kashir
, and
F.
Mashayek
, “
Data driven estimation of electric vehicle battery state-of-charge informed by automotive simulations and multi-physics modeling
,”
J. Power Sources
483
,
229108
(
2021
).
31.
B.
Ma
,
L.
Zhang
,
H.
Yu
,
B.
Zou
,
W.
Wang
,
C.
Zhang
,
S.
Yang
, and
X.
Liu
, “
End-cloud collaboration method enables accurate state of health and remaining useful life online estimation in lithium-ion batteries
,”
J. Energy Chem.
82
,
1
17
(
2023
).
32.
R. E.
Kalman
, “
A new approach to linear filtering and prediction problems
,”
J. Basic Eng.
82
,
35
45
(
1960
).
33.
M.
Pecht
, see https://web.calce.umd.edu/batteries/data.htm for “
Battery Data Set
” (
CALCE, CALCE Battery Research Group
,
Maryland, MD
,
2017
).
34.
P.
Dong
,
J.
Zhao
,
X.
Liu
,
J.
Wu
,
X.
Xu
,
Y.
Liu
,
S.
Wang
, and
W.
Guo
, “
Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends
,”
Renewable Sustainable Energy Rev.
170
,
112947
(
2022
).
35.
X.
Xu
,
J.
Zhao
,
J.
Zhao
,
K.
Shi
,
P.
Dong
,
S.
Wang
,
Y.
Liu
,
W.
Guo
, and
X.
Liu
, “
Comparative study on fuel saving potential of series-parallel hybrid transmission and series hybrid transmission
,”
Energy Convers. Manage.
252
,
114970
(
2022
).
You do not currently have access to this content.