Solar photovoltaic (PV) power plays a crucial role in mitigating climate change. However, climate change may amplify weather variability and extreme conditions. The extreme conditions can increase the very low PV output and thereby increase the need for grid stabilization services. This study examined how weather variability affects PV power output in the near- (2025–2054) and far-future (2071–2100). The ensemble mean calculated using seven global climate models participating in the coupled model intercomparison project phase 6 for three different shared socioeconomic pathways (SSPs) (SSP126, SSP245, SSP585) was used for the assessment. The standard deviation of the monthly PV power output and the share of very low monthly PV power output were used to assess the variability of PV power output. The findings indicate that the summer PV power output was projected to decrease by 6%–8% in central and northern Tibet under a high emissions scenario (SSP585). The summer months with low PV power output were projected to increase in western regions of China, known for its abundant solar resources. The findings of this study provide valuable insight for energy planners to make up for the influence of future weather variability.

1.
M. J.
Bush
,
Climate Change and Renewable Energy: How to End the Climate Crisis
(
Springer International Publishing
,
Cham
,
2020
).
2.
L.
Zhang
,
Q.
Du
,
D.
Zhou
, and
P.
Zhou
, “
How does the photovoltaic industry contribute to China's carbon neutrality goal? Analysis of a system dynamics simulation
,”
Sci. Total Environ.
808
,
151868
(
2022
).
3.
S. Q.
Beyaztas
,
K.-W. C.
Salih
,
N.
Al-Ansari
, and
Z. M.
Yaseen
, “
Construction of functional data analysis modeling strategy for global solar radiation prediction: Application of cross-station paradigm
,”
Eng. Appl. Comput. Fluid Mech.
13
(
1
),
1165
1181
(
2019
).
4.
A.
Cherp
,
V.
Vinichenko
,
J.
Tosun
,
J. A.
Gordon
, and
J.
Jewell
, “
National growth dynamics of wind and solar power compared to the growth required for global climate targets
,”
Nat. Energy
6
(
7
),
742
754
(
2021
).
5.
M.
Xu
,
P.
Xie
, and
B.-C.
Xie
, “
Study of China's optimal solar photovoltaic power development path to 2050
,”
Resour. Policy
65
,
101541
(
2020
).
6.
H.-M.
Zuo
,
J.
Qiu
,
Y.-H.
Jia
,
Q.
Wang
, and
F.-F.
Li
, “
Ten-minute prediction of solar irradiance based on cloud detection and a long short-term memory (LSTM) model
,”
Energy Rep.
8
,
5146
5157
(
2022
).
7.
J.
Song
,
Z.
Yan
,
Y.
Niu
,
L.
Zou
, and
X.
Lin
, “
Cloud detection method based on clear sky background under multiple weather conditions
,”
Sol. Energy
255
,
1
11
(
2023
).
8.
F.
Ghani
,
G.
Rosengarten
,
M.
Duke
, and
J. K.
Carson
, “
On the influence of temperature on crystalline silicon solar cell characterisation parameters
,”
Sol. Energy
112
,
437
445
(
2015
).
9.
T.
Bhattacharya
,
A. K.
Chakraborty
, and
K.
Pal
, “
Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura, India
,”
J. Sol. Energy
2014
,
817078
.
10.
M.
Wild
,
D.
Folini
,
F.
Henschel
,
N.
Fischer
, and
B.
Müller
, “
Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems
,”
Sol. Energy
116
,
12
24
(
2015
).
11.
L.
Zou
,
L.
Wang
,
J.
Li
,
Y.
Lu
,
W.
Gong
, and
Y.
Niu
, “
Global surface solar radiation and photovoltaic power from coupled model intercomparison project phase 5 climate models
,”
J. Cleaner Prod.
224
,
304
324
(
2019
).
12.
S.
Feron
,
R. R.
Cordero
,
A.
Damiani
, and
R. B.
Jackson
, “
Climate change extremes and photovoltaic power output
,”
Nat. Sustainability
4
(
3
),
270
276
(
2021
).
13.
J.
Niu
,
W.
Qin
,
L.
Wang
,
M.
Zhang
,
J.
Wu
, and
Y.
Zhang
, “
Climate change impact on photovoltaic power potential in China based on CMIP6 models
,”
Sci. Total Environ.
858
,
159776
(
2023
).
14.
N.
Lu
,
L.
Yao
,
J.
Qin
,
K.
Yang
,
M.
Wild
, and
H.
Jiang
, “
High emission scenario substantially damages China's photovoltaic potential
,”
Geophys. Res. Lett.
49
(
20
),
e2022GL100068
, https://doi.org/10.1029/2022GL100068 (
2022
).
15.
L.
Yang
,
J.
Jiang
,
T.
Liu
,
Y.
Li
,
Y.
Zhou
, and
X.
Gao
, “
Projections of future changes in solar radiation in China based on CMIP5 climate models
,”
Global Energy Interconnect.
1
(
4
),
452
459
(
2018
).
16.
X.
Zhao
,
G.
Huang
,
C.
Lu
,
X.
Zhou
, and
Y.
Li
, “
Impacts of climate change on photovoltaic energy potential: A case study of China
,”
Appl. Energy
280
,
115888
(
2020
).
17.
R.
Dutta
,
K.
Chanda
, and
R.
Maity
, “
Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis
,”
Renewable Energy
188
,
819
829
(
2022
).
18.
F.
Ge
,
S.
Zhu
,
H.
Luo
,
X.
Zhi
, and
H.
Wang
, “
Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble
,”
Environ. Res. Lett.
16
(
2
),
024013
(
2021
).
19.
X.
Lei
,
C.
Xu
,
F.
Liu
,
L.
Song
,
L.
Cao
, and
N.
Suo
, “
Evaluation of CMIP6 models and multi-model ensemble for extreme precipitation over arid Central Asia
,”
Remote Sens.
15
(
9
),
2376
(
2023
).
20.
S.
Jerez
,
I.
Tobin
,
R.
Vautard
,
J. P.
Montávez
,
J. M.
López-Romero
,
F.
Thais
,
B.
Bartok
et al, “
The impact of climate change on photovoltaic power generation in Europe
,”
Nat. Commun.
6
(
1
),
10014
(
2015
).
21.
M. H.
Alaaeddin
,
S. M.
Sapuan
,
M. Y. M.
Zuhri
,
E. S.
Zainudin
, and
F. M.
Al-Oqla
, “
Photovoltaic applications: Status and manufacturing prospects
,”
Renewable Sustainable Energy Rev.
102
,
318
332
(
2019
).
22.
A.
Bichet
,
B.
Hingray
,
G.
Evin
,
A.
Diedhiou
,
C. M. F.
Kebe
, and
S.
Anquetin
, “
Potential impact of climate change on solar resource in Africa for photovoltaic energy: Analyses from CORDEX-AFRICA climate experiments
,”
Environ. Res. Lett.
14
(
12
),
124039
(
2019
).
23.
V.
Eyring
,
S.
Bony
,
G. A.
Meehl
,
C. A.
Senior
,
B.
Stevens
,
R. J.
Stouffer
, and
K. E.
Taylor
, “
Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
,”
Geosci. Model Dev.
9
(
5
),
1937
1958
(
2016
).
24.
D. P.
Van Vuuren
,
E.
Stehfest
,
D. E.
Gernaat
,
J. C.
Doelman
,
M.
Van den Berg
,
M.
Harmsen
,
H. S.
de Boer
et al, “
Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm
,”
Global Environ. Change
42
,
237
250
(
2017
).
25.
O.
Fricko
,
P.
Havlik
,
J.
Rogelj
,
Z.
Klimont
,
M.
Gusti
,
N.
Johnson
,
P.
Kolp
et al, “
The marker quantification of the shared socioeconomic pathway 2: A middle-of-the-road scenario for the 21st century
,”
Global Environ. Change
42
,
251
267
(
2017
).
26.
M.
Almazroui
,
S.
Saeed
,
F.
Saeed
,
M. N.
Islam
, and
M.
Ismail
, “
Projections of precipitation and temperature over the South Asian countries in CMIP6
,”
Earth Syst. Environ.
4
,
297
320
(
2020
).
27.
H.
Li
,
Z.
Li
,
Y.
Chen
,
Y.
Liu
,
Y.
Hu
,
F.
Sun
, and
P.
Mindje Kayumba
, “
Projected meteorological drought over Asian drylands under different CMIP6 scenarios
,”
Remote Sens.
13
(
21
),
4409
(
2021
).
28.
H.
Hersbach
,
B.
Bell
,
P.
Berrisford
,
G.
Biavati
,
A.
Horányi
,
J.
Muñoz Sabater
,
J.
Nicolas
,
C.
Peubey
,
R.
Radu
,
I.
Rozum
,
D.
Schepers
,
A.
Simmons
,
C.
Soci
,
D.
Dee
, and
J.-N.
Thépaut
(
2023
). “ERA5 monthly averaged data on pressure levels from 1940 to present,”
Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-mean
29.
A. A.
Samouly
,
C. N.
Luong
,
Z.
Li
,
S.
Smith
,
B.
Baetz
, and
M.
Ghaith
, “
Performance of multi-model ensembles for the simulation of temperature variability over Ontario, Canada
,”
Environ. Earth Sci.
77
,
524
(
2018
).
30.
X.
Xu
,
S.
Hu
,
P.
Shi
,
H.
Shao
,
R.
Li
, and
Z.
Li
, “
Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm
,”
Energy
262
,
125342
(
2023
).
31.
R.
Bryce
,
I.
Losada Carreño
,
A.
Kumler
,
B.-M.
Hodge
,
B.
Roberts
, and
C.
Brancucci Martinez-Anido
, “
Consequences of neglecting the interannual variability of the solar resource: A case study of photovoltaic power among the Hawaiian Islands
,”
Sol. Energy
167
,
61
75
(
2018
).
32.
Y.
Feng
,
X.
Zhang
,
Y.
Jia
,
N.
Cui
,
W.
Hao
,
H.
Li
, and
D.
Gong
, “
High-resolution assessment of solar radiation and energy potential in China
,”
Energy Convers. Manage.
240
,
114265
(
2021
).
33.
T.
Qiu
,
L.
Wang
,
Y.
Lu
,
M.
Zhang
,
W.
Qin
,
S.
Wang
, and
L.
Wang
, “
Potential assessment of photovoltaic power generation in China
,”
Renewable Sustainable Energy Rev.
154
,
111900
(
2022
).
34.
A.
Patt
,
S.
Pfenninger
, and
J.
Lilliestam
, “
Vulnerability of solar energy infrastructure and output to climate change
,”
Clim. Change
121
,
93
102
(
2013
).
35.
B.
Bartók
,
M.
Wild
,
D.
Folini
,
D.
Lüthi
,
S.
Kotlarski
,
C.
Schär
,
R.
Vautard
,
S.
Jerez
, and
Z.
Imecs
, “
Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe
,”
Clim. Dyn.
49
,
2665
2683
(
2017
).
36.
J.
Zhang
,
Q.
You
, and
S.
Ullah
, “
Changes in photovoltaic potential over China in a warmer future
,”
Environ. Res. Lett.
17
(
11
),
114032
(
2022
).
You do not currently have access to this content.