Offshore photovoltaic power stations (OPVPS) greatly help solve energy problems and land resource scarcity. A crucial phase of the OPVPS project lifecycle is site selection. To select the optimal location of OPVPS with many difficulties such as the uncertainty of the environment, the compensating relationships among criteria, and the different attributes of the alternatives, this paper proposed a fuzzy multi-criteria decision-making framework based on Pythagorean fuzzy Elimination et Choix Traduisant la Realité-III (ELECTRE-III) method. First, the comprehensive criteria system for siting OPVPS was constructed, which included veto and evaluation criteria. Second, the Pythagorean fuzzy set was used to express the uncertain evaluation of experts. Third, considering the actual situation that experts had different experiences and abilities, this paper proposed a novel expert weighting method. Fourth, entropy weighting method, best–worst method, and combination weighting of game theory were introduced to calculate the criteria weights. Fifth, considering the compensation between criteria, ELECTRE-III was used for ranking. Finally, to verify the applicability and robustness of the proposed framework, a China case study was conducted; the results showed that Haizhou Bay is the best alternative.

1.
Abdel-Basset
,
M.
,
Gamal
,
A.
,
Chakrabortty
,
R. K.
, and
Ryan
,
M.
, “
A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: A case study
,”
J. Cleaner Prod.
280
,
124462
(
2021
).
2.
Aghaloo
,
K.
,
Ali
,
T.
,
Chiu
,
Y.-R.
, and
Sharifi
,
A.
, “
Optimal site selection for the solar-wind hybrid renewable energy systems in Bangladesh using an integrated GIS-based BWM-fuzzy logic method
,”
Energy Convers. Manage.
283
,
116899
(
2023
).
3.
Ak
,
M. F.
and
Gul
,
M.
, “
AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis
,”
Complex Intell. Syst.
5
,
113
126
(
2019
).
4.
Akram
,
M.
,
Ilyas
,
F.
, and
Al-Kenani
,
A. N.
, “
Two-phase group decision-aiding system using ELECTRE III method in Pythagorean fuzzy environment
,”
Arabian J. Sci. Eng.
46
,
3549
3566
(
2021
).
5.
Akram
,
M.
,
Luqman
,
A.
, and
Alcantud
,
J. C. R.
, “
An integrated ELECTRE-I approach for risk evaluation with hesitant Pythagorean fuzzy information
,”
Expert Syst. Appl.
200
,
116945
(
2022
).
6.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
, “
Performance improvement study of an integrated photovoltaic system for offshore power production
,”
Int. J. Energy Res.
45
,
772
785
(
2021
).
7.
Altay
,
B. C.
,
Celik
,
E.
,
Okumus
,
A.
,
Balin
,
A.
, and
Gul
,
M.
, “
An integrated interval type-2 fuzzy BWM-MARCOS model for location selection of e-scooter sharing stations: The case of a university campus
,”
Eng. Appl. Artif. Intell.
122
,
106095
(
2023
).
8.
Ara
,
S. R.
,
Paul
,
S.
, and
Rather
,
Z. H.
, “
Two-level planning approach to analyze techno-economic feasibility of hybrid offshore wind-solar PV power plants
,”
Sustainable Energy Technol. Assess.
47
,
101509
(
2021
).
9.
Atanassov
,
K. T.
, “
Intuitionistic fuzzy sets
,”
Fuzzy Sets Syst.
20
,
87
96
(
1986
).
10.
Ayyildiz
,
E.
, “
A novel Pythagorean fuzzy multi-criteria decision-making methodology for e-scooter charging station location-selection
,”
Transp. Res. Part D
111
,
103459
(
2022
).
11.
Behzad
,
M.
,
Hashemkhani Zolfani
,
S.
,
Pamucar
,
D.
, and
Behzad
,
M.
, “
A comparative assessment of solid waste management performance in the Nordic countries based on BWM-EDAS
,”
J. Cleaner Prod.
266
,
122008
(
2020
).
12.
Bodily
,
S. E.
, “
Note—A delegation process for combining individual utility functions
,”
Manage. Sci.
25
,
1035
1041
(
1979
).
13.
Bolturk
,
E.
, “
Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm
,”
J. Enterp. Inf. Manage.
31
,
550
564
(
2018
).
14.
Bonetti
,
A.
,
Bortot
,
S.
,
Fedrizzi
,
M.
,
Marques Pereira
,
R. A.
, and
Molinari
,
A.
, “
Modelling group processes and effort estimation in project management using the Choquet integral: An MCDM approach
,”
Expert Syst. Appl.
39
,
13366
13375
(
2012
).
15.
Cali
,
S.
and
Balaman
,
S. Y.
, “
A novel outranking based multi criteria group decision making methodology integrating ELECTRE and VIKOR under intuitionistic fuzzy environment
,”
Expert Syst. Appl.
119
,
36
50
(
2019
).
16.
Carpitella
,
S.
,
Mzougui
,
I.
,
Benitez
,
J.
,
Carpitella
,
F.
,
Certa
,
A.
,
Izquierdo
,
J.
, and
La Cascia
,
M.
, “
A risk evaluation framework for the best maintenance strategy: The case of a marine salt manufacture firm
,”
Reliab. Eng. Syst. Saf.
205
,
107265
(
2021
).
17.
Chen
,
Z. S.
,
Zhang
,
X.
,
Rodriguez
,
R. M.
,
Pedrycz
,
W.
, and
Martinez
,
L.
, “
Expertise-based bid evaluation for construction-contractor selection with generalized comparative linguistic ELECTRE III
,”
Autom. Constr.
125
,
103578
(
2021
).
18.
Cooke
,
R. M.
,
ElSaadany
,
S.
, and
Huang
,
X.
, “
On the performance of social network and likelihood-based expert weighting schemes
,”
Reliab. Eng. Syst. Saf.
93
,
745
756
(
2008
).
19.
Dang
,
R. N.
,
Li
,
X. M.
,
Li
,
C. T.
, and
Xu
,
C. B.
, “
A MCDM framework for site selection of island photovoltaic charging station based on new criteria identification and a hybrid fuzzy approach
,”
Sustainable Cities Soc.
74
,
103230
(
2021
).
20.
Delgado
,
A.
and
Romero
,
I.
, “
Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru
,”
Environ. Modell. Software
77
,
108
121
(
2016
).
21.
Deveci
,
M.
,
Cali
,
U.
,
Kucuksari
,
S.
, and
Erdogan
,
N.
, “
Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland
,”
Energy
198
,
117317
(
2020
).
22.
Deveci
,
M.
,
Cali
,
U.
, and
Pamucar
,
D.
, “
Evaluation of criteria for site selection of solar photovoltaic (PV) projects using fuzzy logarithmic additive estimation of weight coefficients
,”
Energy Rep.
7
,
8805
8824
(
2021a
).
23.
Deveci
,
M.
,
Özcan
,
E.
,
John
,
R.
,
Pamucar
,
D.
, and
Karaman
,
H.
, “
Offshore wind farm site selection using interval rough numbers based best-worst method and MARCOS
,”
Appl. Soft Comput.
109
,
107532
(
2021b
).
24.
Fei
,
L.
,
Feng
,
Y.
, and
Liu
,
L.
, “
On Pythagorean fuzzy decision making using soft likelihood functions
,”
Int. J. Intell. Syst.
34
,
3317
3335
(
2019
).
25.
Galo
,
N. R.
,
Calache
,
L. D. D.
, and
Carpinetti
,
L. C. R.
, “
A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI
,”
Int. J. Prod. Econ.
202
,
182
196
(
2018
).
26.
Gandotra
,
N.
,
Kizielewicz
,
B.
,
Anand
,
A.
,
Baczkiewicz
,
A.
,
Shekhovtsov
,
A.
,
Watrobski
,
J.
,
Rezaei
,
A.
, and
Salabun
,
W.
, “
New Pythagorean entropy measure with application in multi-criteria decision analysis
,”
Entropy
23
,
1600
(
2021
).
27.
Gao
,
J.
,
Guo
,
F.
,
Li
,
X.
,
Huang
,
X.
, and
Men
,
H.
, “
Risk assessment of offshore photovoltaic projects under probabilistic linguistic environment
,”
Renewable Energy
163
,
172
187
(
2021a
).
28.
Gao
,
J.
,
Li
,
X.
,
Guo
,
F.
,
Huang
,
X.
,
Men
,
H.
, and
Li
,
M.
, “
Site selection decision of waste-to-energy projects based on an extended cloud-TODIM method from the perspective of low-carbon
,”
J. Cleaner Prod.
303
,
127036
(
2021b
).
29.
Gao
,
J.
,
Men
,
H.
,
Guo
,
F.
,
Liu
,
H.
,
Li
,
X.
, and
Huang
,
X.
, “
A multi-criteria decision-making framework for compressed air energy storage power site selection based on the probabilistic language term sets and regret theory
,”
J. Energy Storage
37
,
102473
(
2021c
).
30.
Gao
,
J.
,
Wang
,
Z.
,
Wang
,
Z.
,
Wang
,
C.
,
Zhang
,
R.
,
Xu
,
G.
, and
Wu
,
X.
, “
Macro-site selection and obstacle factor extraction of biomass cogeneration based on comprehensive weight method of game theory
,”
Energy Rep.
8
,
14416
14427
(
2022
).
31.
Geetha
,
S.
,
Narayanamoorthy
,
S.
,
Kureethara
,
J. V.
,
Baleanu
,
D.
, and
Kang
,
D. K.
, “
The hesitant Pythagorean fuzzy ELECTRE III: An adaptable recycling method for plastic materials
,”
J. Cleaner Prod.
291
,
125281
(
2021
).
32.
Ghobadi
,
M.
,
Nasri
,
M.
, and
Ahmadipari
,
M.
, “
Land suitability assessment (LSA) for aquaculture site selection via an integrated GIS-DANP multi-criteria method; a case study of Lorestan Province, Iran
,”
Aquaculture
530
,
735776
(
2021
).
33.
Ghorui
,
N.
,
Ghosh
,
A.
,
Algehyne
,
E. A.
,
Mondal
,
S. P.
, and
Saha
,
A. K.
, “
AHP-TOPSIS inspired shopping mall site selection problem with fuzzy data
,”
Mathematics
8
,
1380
(
2020
).
34.
Göçer
,
F.
, “
Limestone supplier selection for coal thermal power plant by applying integrated PF-SAW and PF-EDAS approach
,”
Soft Comput.
26
,
6393
6414
(
2022
).
35.
Golroodbari
,
S. Z. M.
,
Vaartjes
,
D. F.
,
Meit
,
J. B. L.
,
van Hoeken
,
A. P.
,
Eberveld
,
M.
,
Jonker
,
H.
, and
van Sark
,
W.
, “
Pooling the cable: A techno-economic feasibility study of integrating offshore floating photovoltaic solar technology within an offshore wind park
,”
Sol. Energy
219
,
65
74
(
2021
).
36.
Gullu
,
E.
,
Mert
,
B. D.
,
Nazligul
,
H.
,
Demirdelen
,
T.
, and
Gurdal
,
Y.
, “
Experimental and theoretical study: Design and implementation of a floating photovoltaic system for hydrogen production
,”
Int. J. Energy Res.
46
,
5083
5098
(
2022
).
37.
Guo
,
F. J.
,
Gao
,
J. W.
,
Men
,
H. J.
,
Fan
,
Y. J.
, and
Liu
,
H. H.
, “
Large-scale group decision-making framework for the site selection of integrated floating photovoltaic-pumped storage power system
,”
J. Energy Storage
43
,
103125
(
2021
).
38.
Hasan
,
A.
and
Dincer
,
I.
, “
A new performance assessment methodology of bifacial photovoltaic solar panels for offshore applications
,”
Energy Convers. Manage.
220
,
112972
(
2020
).
39.
He
,
D.
,
Xu
,
J.
, and
Chen
,
X.
, “
Information-theoretic-entropy based weight aggregation method in multiple-attribute group decision-making,”
Entropy
18,
171
(
2016
).
40.
Huang
,
W.-G.
,
Zhang
,
S.-W.
,
Wang
,
G.-Z.
,
Huang
,
J.
,
Lu
,
X.
,
Wu
,
S.-L.
, and
Wang
,
Z.-T.
, “
Modeling methodology for site selection evaluation of underground coal gasification based on combination weighting method with game theory
,”
ACS Omega
8
,
11544
11555
(
2023
).
41.
Ju
,
W.
,
Wu
,
J.
,
Kang
,
Q.
,
Jiang
,
J.
, and
Xing
,
Z.
, “
Fire risk assessment of subway stations based on combination weighting of game theory and TOPSIS method
,”
Sustainability
14
,
7275
(
2022
).
42.
Kaya
,
O.
,
Alemdar
,
K. D.
,
Atalay
,
A.
,
Codur
,
M. Y.
, and
Tortum
,
A.
, “
Electric car sharing stations site selection from the perspective of sustainability: A GIS-based multi-criteria decision making approach
,”
Sustainable Energy Technol. Assess.
52
,
102026
(
2022
).
43.
Lam
,
W. H.
,
Lam
,
W. S.
,
Liew
,
K. F.
, and
Lee
,
P. F.
, “
Decision analysis on the financial performance of companies using integrated entropy-fuzzy TOPSIS model,”
Mathematics
11
,
397
(
2023
).
44.
Li
,
C. T.
,
Xu
,
C. B.
, and
Li
,
X. M.
, “
A multi-criteria decision-making framework for site selection of distributed PV power stations along high-speed railway
,”
J. Cleaner Prod.
277
,
124086
(
2020
).
45.
Liu
,
B.
,
Shen
,
Y.
,
Chen
,
Y.
,
Chen
,
X.
, and
Wang
,
Y.
, “
A two-layer weight determination method for complex multi-attribute large-group decision-making experts in a linguistic environment
,”
Inf. Fusion
23
,
156
165
(
2015
).
46.
Liu
,
J. C.
,
Xu
,
F. Q.
, and
Lin
,
S. S.
, “
Site selection of photovoltaic power plants in a value chain based on grey cumulative prospect theory for sustainability: A case study in Northwest China
,”
J. Cleaner Prod.
148
,
386
397
(
2017
).
47.
Liu
,
W.
and
Li
,
L.
, “
An approach to determining the integrated weights of decision makers based on interval number group decision matrices
,”
Knowledge-Based Syst.
90
,
92
98
(
2015
).
48.
Lu
,
W. X.
,
Liang
,
C. Y.
, and
Ding
,
Y.
, “
A method for determining the objective weights of a experts based on evidence similarity in group decision-making
,” in
4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM)
, Dalian, People's Republic of China (
IEEE
,
2008
), pp.
11872
11875
.
49.
Lv
,
J.
,
Mao
,
Q. H.
,
Li
,
Q. W.
, and
Yu
,
R. F.
, “
A group emergency decision-making method for epidemic prevention and control based on probabilistic hesitant fuzzy prospect set considering quality of information
,”
Int. J. Comput. Intell. Syst.
15
,
33
(
2022
).
50.
Ma
,
Y. F.
,
Zhao
,
Y. Y.
,
Wang
,
X. Y.
,
Feng
,
C. Y.
,
Zhou
,
X. Y.
, and
Lev
,
B.
, “
Integrated BWM-entropy weighting and MULTIMOORA method with probabilistic linguistic information for the evaluation of waste recycling apps
,”
Appl. Intell.
53
,
813
836
(
2022
).
51.
Mao
,
Q. H.
,
Guo
,
M. X.
,
Lv
,
J.
,
Chen
,
J. J.
,
Xie
,
P. Z.
, and
Li
,
M.
, “
A risk assessment framework of hybrid offshore wind-solar PV power plants under a probabilistic linguistic environment
,”
Sustainability
14
,
4197
(
2022
).
52.
Mohamadghasemi
,
A.
,
Hadi-Vencheh
,
A.
,
Lotfi
,
F. H.
, and
Khalilzadeh
,
M.
, “
An integrated group FWA-ELECTRE III approach based on interval type-2 fuzzy sets for solving the MCDM problems using limit distance mean
,”
Complex Intell. Syst.
6
,
355
389
(
2020
).
53.
Molla
,
M. U.
,
Giri
,
B. C.
, and
Biswas
,
P.
, “
Extended PROMETHEE method with Pythagorean fuzzy sets for medical diagnosis problems
,”
Soft Comput.
25
,
4503
4512
(
2021
).
54.
Nam
,
K.
,
Hwangbo
,
S.
, and
Yoo
,
C.
, “
A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea
,”
Renewable Sustainable Energy Rev.
122
,
109725
(
2020
).
55.
Pang
,
J.
,
Liang
,
J.
, and
Song
,
P.
, “
An adaptive consensus method for multi-attribute group decision making under uncertain linguistic environment
,”
Appl. Soft Comput.
58
,
339
353
(
2017
).
56.
Peng
,
X.
and
Yang
,
Y.
, “
Some results for Pythagorean fuzzy sets
,”
Int. J. Intell. Syst.
30
,
1133
1160
(
2015
).
57.
Perez
,
M.
,
Perez
,
R.
,
Ferguson
,
C. R.
, and
Schlemmer
,
J.
, “
Deploying effectively dispatchable PV on reservoirs: Comparing floating PV to other renewable technologies
,”
Sol. Energy
174
,
837
847
(
2018
).
58.
Qi
,
X.
,
Liang
,
C.
, and
Zhang
,
J.
, “
Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment
,”
Comput. Ind. Eng.
79
,
52
64
(
2015
).
59.
Ramya
,
L.
,
Narayanamoorthy
,
S.
,
Manirathinam
,
T.
,
Kalaiselvan
,
S.
, and
Kang
,
D.
, “
An extension of the hesitant Pythagorean fuzzy ELECTRE III: Techniques for disposing of e-waste without any harm
,”
Appl. Nanosci.
13
,
1939
1957
(
2022
).
60.
Rezaei
,
J.
, “
Best-worst multi-criteria decision-making method
,”
Omega
53
,
49
57
(
2015
).
61.
Sahin
,
T.
,
Ocak
,
S.
, and
Top
,
M.
, “
Analytic hierarchy process for hospital site selection
,”
Health Policy Technol.
8
,
42
50
(
2019
).
62.
Sang
,
X. Z.
,
Yu
,
X. Y.
,
Chang
,
C. T.
, and
Liu
,
X. W.
, “
Electric bus charging station site selection based on the combined DEMATEL and PROMETHEE-PT framework
,”
Comput. Ind. Eng.
168
,
108116
(
2022
).
63.
Schillings
,
C.
,
Wanderer
,
T.
,
Cameron
,
L.
,
van der Wal
,
J. T.
,
Jacquemin
,
J.
, and
Veum
,
K.
, “
A decision support system for assessing offshore wind energy potential in the North Sea
,”
Energy Policy
49
,
541
551
(
2012
).
64.
Solangi
,
Y. A.
,
Shah
,
S. A. A.
,
Zameer
,
H.
,
Ikram
,
M.
, and
Saracoglu
,
B. O.
, “
Assessing the solar PV power project site selection in Pakistan: Based on AHP-fuzzy VIKOR approach
,”
Environ. Sci. Pollut. Res.
26
,
30286
30302
(
2019
).
65.
Temiz
,
M.
and
Javani
,
N.
, “
Design and analysis of a combined floating photovoltaic system for electricity and hydrogen production
,”
Int. J. Hydrogen Energy
45
,
3457
3469
(
2020
).
66.
Vagiona
,
D. G.
, “
Comparative multicriteria analysis methods for ranking sites for solar farm deployment: A case study in Greece
,”
Energies
14
,
8371
(
2021
).
67.
Vasileiou
,
M.
,
Loukogeorgaki
,
E.
, and
Vagiona
,
D. G.
, “
GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece
,”
Renewable Sustainable Energy Rev.
73
,
745
757
(
2017
).
68.
Wang
,
C. N.
,
Nguyen
,
V. T.
,
Thai
,
H. T. N.
, and
Duong
,
D. H.
, “
Multi-criteria decision making (MCDM) approaches for solar power plant location selection in Viet Nam
,”
Energies
11
,
1504
(
2018
).
69.
Wu
,
Y.
,
Li
,
L.
,
Song
,
Z.
, and
Lin
,
X.
, “
Risk assessment on offshore photovoltaic power generation projects in China based on a fuzzy analysis framework
,”
J. Cleaner Prod.
215
,
46
62
(
2019a
).
70.
Wu
,
Y.
,
Zhang
,
T.
,
Xu
,
C.
,
Zhang
,
X.
,
Ke
,
Y.
,
Chu
,
H.
, and
Xu
,
R.
, “
Location selection of seawater pumped hydro storage station in China based on multi-attribute decision making
,”
Renewable Energy
139
,
410
425
(
2019b
).
71.
Wu
,
Y. N.
,
Zhang
,
J. Y.
,
Yuan
,
J. P.
,
Geng
,
S.
, and
Zhang
,
H. B.
, “
Study of decision framework of offshore wind power station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China
,”
Energy Convers. Manage.
113
,
66
81
(
2016
).
72.
Wu
,
Y. N.
,
Zhang
,
B. Y.
,
Xu
,
C. B.
, and
Li
,
L. W. Y.
, “
Site selection decision framework using fuzzy ANP-VIKOR for large commercial rooftop PV system based on sustainability perspective
,”
Sustainable Cities Soc.
40
,
454
470
(
2018
).
73.
Wu
,
Y. N.
,
Zhang
,
B. Y.
,
Wu
,
C. H.
,
Zhang
,
T.
, and
Liu
,
F. T.
, “
Optimal site selection for parabolic trough concentrating solar power plant using extended PROMETHEE method: A case in China
,”
Renewable Energy
143
,
1910
1927
(
2019c
).
74.
Wu
,
Y. N.
,
Zhang
,
T.
,
Xu
,
C. B.
,
Zhang
,
B. Y.
,
Li
,
L. W. Y.
,
Ke
,
Y. M.
,
Yan
,
Y. D.
, and
Xu
,
R. H.
, “
Optimal location selection for offshore wind-PV-seawater pumped storage power plant using a hybrid MCDM approach: A two-stage framework
,”
Energy Convers. Manage.
199
,
112066
(
2019d
).
75.
Wu
,
Y. N.
,
Tao
,
Y.
,
Zhang
,
B. Y.
,
Wang
,
S. M.
,
Xu
,
C. B.
, and
Zhou
,
J. L.
, “
A decision framework of offshore wind power station site selection using a PROMETHEE method under intuitionistic fuzzy environment: A case in China
,”
Ocean Coastal Manage.
184
,
105016
(
2020
).
76.
Xian
,
S.
,
Yin
,
Y.
,
Fu
,
M.
, and
Yu
,
F.
, “
A ranking function based on principal‐value Pythagorean fuzzy set in multicriteria decision making
,”
Int. J. Intell. Syst.
33
,
1717
1730
(
2018
).
77.
Yager
,
R. R.
, “
Pythagorean fuzzy subsets
,” in
Annual Meeting of the North-American-Fuzzy-Information-Processing-Society (NAFIPS)
, Edmonton, Canada (
Joint World Congress of the International-Fuzzy-Systems-Association (IFSA)
,
2013
), pp.
57
61
.
78.
Yager
,
R. R.
and
Abbasov
,
A. M.
, “
Pythagorean membership grades, complex numbers, and decision making
,”
Int. J. Intell. Syst.
28
,
436
452
(
2013
).
79.
Yager
,
R. R.
, “
Pythagorean membership grades in multicriteria decision making
,”
IEEE Trans. Fuzzy Syst.
22
,
958
965
(
2014
).
80.
Yousefi
,
H.
,
Hafeznia
,
H.
, and
Yousefi-Sahzabi
,
A.
, “
Spatial site selection for solar power plants using a GIS-based boolean-fuzzy logic model: A case study of Markazi Province, Iran
,”
Energies
11
,
1648
(
2018
).
81.
Yue
,
Z.
, “
Approach to group decision making based on determining the weights of experts by using projection method
,”
Appl. Math. Modell.
36
,
2900
2910
(
2012
).
82.
Zadeh
,
L. A.
, “
Fuzzy sets
,”
Inf. Control
8
,
338
353
(
1965
).
83.
Zahedi
,
R.
,
Ranjbaran
,
P.
,
Gharehpetian
,
G. B.
,
Mohammadi
,
F.
, and
Ahmadiahangar
,
R.
, “
Cleaning of floating photovoltaic systems: A critical review on approaches from technical and economic perspectives
,”
Energies
14
,
2018
(
2021
).
84.
Zappa
,
W.
and
van den Broek
,
M.
, “
Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios
,”
Renewable Sustainable Energy Rev.
94
,
1192
1216
(
2018
).
85.
Zhang
,
X.
and
Xu
,
Z.
, “
Deriving experts' weights based on consistency maximization in intuitionistic fuzzy group decision making
,”
J. Intell. Fuzzy Syst.
27
,
221
233
(
2014a
).
86.
Zhang
,
X.
and
Xu
,
Z.
, “
Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets
,”
Int. J. Intell. Syst.
29
,
1061
1078
(
2014b
).
87.
Zhang
,
X.
, “
A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making
,”
Int. J. Intell. Syst.
31
,
593
611
(
2016
).
88.
Zhao
,
C. W.
,
Xu
,
X. H.
,
Liu
,
R. H.
, and
He
,
J. S.
, “
A multi-aspect coordination HDRED site selection framework under multi-type heterogeneous environments
,”
Renewable Energy
171
,
833
848
(
2021
).
You do not currently have access to this content.