The primary tool currently used for a wind turbine preliminary design is the blade element momentum method, which lacks a detailed wake model and relies on an assumption of non-interacting streamtubes. These simplifications limit the designer's ability to tailor the blade shape to minimize the induced power loss of the rotor. Improved prediction of the induced velocity distribution on the blades can be achieved through the use of vortex-based models at a computational cost low enough for use in design processes requiring many iterations. This paper presents the implementation of a potential flow, lifting-surface methodology using elements of distributed vorticity. The use of such elements provides several advantages including higher resolution than filament-based methods, simulation of non-planar blade planforms, and avoids the need for empirical corrections. Because the wake has a strong influence on the flow at the rotor, the accurate prediction of its geometry is highly important for wind turbine analysis. To this end, a force-free relaxed-wake model is presented as well as less numerically intensive fixed-wake and hybrid-wake models. Comparison is made to the blade element momentum method and Goldstein's theoretical solution for the ideal lightly loaded rotor.

1.
H.
Glauert
, “
Airplane propellers
,” in
Aerodynamic Theory
(
Springer
,
Berlin, Germany
,
1935
), pp.
169
360
.
2.
M. O. L.
Hansen
,
Aerodynamics of Wind Turbines
(
Earthscan
,
2007
), Vol.
17
.
3.
S.
Schmitz
,
Aerodynamics of Wind Turbines: A Physical Basis for Analysis and Design
(
John Wiley & Sons, Inc
.,
2019
).
4.
J.
Johansen
and
N. N.
Sørensen
, “
Aerodynamic investigation of winglets on wind turbine blades using CFD
,”
Report No. Risø-R-1543(EN)
(
Risø National Laboratory
,
2006
).
5.
M. O. L.
Hansen
,
J. N.
Sørensen
,
S.
Voutsinas
,
N.
Sørensen
, and
H. A.
Madsen
, “
State of the art in wind turbine aerodynamics and aeroelasticity
,”
Prog. Aerosp. Sci.
42
,
285
330
(
2006
).
6.
D.
Maniaci
and
M.
Maughmer
, “
Winglet design for wind turbines using a free-wake vortex analysis method
,” AIAA Paper No. 2012-1158,
2012
.
7.
R. H.
Miller
, “
The aerodynamics and dynamic analysis of horizontal axis wind turbines
,”
J. Wind Eng.
15
,
329
340
(
1983
).
8.
S.
Øye
, “
A simple vortex model of a turbine rotor
,” in
Proceedings of the Third IEA Symposium on the Aerodynamics of Wind Turbines,
1990
.
9.
J.
Gould
and
S. P.
Fiddes
, “
Computational methods for the performance prediction of hawts
,”
J. Wind Eng. Ind. Aerodyn.
39
,
61
72
(
1992
).
10.
D. J.
Robinson
,
F. N.
Coton
,
R. A. M.
Galbraith
, and
M.
Vezza
, “
Application of a prescribed wake aerodynamic prediction scheme to horizontal axis wind turbines in axial flow
,”
Wind Eng.
19
,
41
51
(
1995
).
11.
F. N.
Coton
and
T.
Wang
, “
The prediction of horizontal axis wind turbine performance in yawed flow using an unsteady prescribed wake model
,”
Proc. Inst. Mech. Eng., Part A
213
,
33
43
(
1999
).
12.
J.-J.
Chattot
, “
Optimization of wind turbines using helicoidal vortex model
,”
J. Sol. Energy Eng.
125
,
418
424
(
2003
).
13.
A. A.
Afjeh
,
J.
Keith
, and
T.
G
, “
A simplified free wake method for horizontal-axis wind turbine performance prediction
,”
J. Fluids Eng.
108
,
400
406
(
1986
).
14.
F.
Simoes
and
J.
Graham
, “
Application of a free vortex wake model to a horizontal axis wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
39
,
129
138
(
1992
).
15.
J.
Whale
,
C.
Anderson
,
R.
Bareiss
, and
S.
Wagner
, “
An experimental and numerical study of the vortex structure in the wake of a wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
84
,
1
21
(
2000
).
16.
S.
Gupta
and
J. G.
Leishman
, “
Comparison of momentum and vortex methods for the aerodynamic analysis of wind turbines
,” AIAA Paper No. 2005-594,
2005
.
17.
T.
Sant
,
G.
van Kuik
, and
G. J. W.
van Bussel
, “
Estimating the angle of attack from blade pressure measurements on the national renewable energy laboratory phase vi rotor using a free wake vortex model: Yawed conditions
,”
Wind Energy
12
,
1
32
(
2009
).
18.
J.
Johansen
,
H. A.
Madsen
,
M.
Gaunaa
,
C.
Bak
, and
N. N.
Sørensen
, “
Design of a wind turbine rotor for maximum aerodynamic efficiency
,”
Wind Energy
12
,
261
273
(
2009
).
19.
S. G.
Voutsinas
,
M. A.
Belessis
, and
S.
Huberson
, “
Dynamic inflow effects and vortex particle methods
,” in
European Wind Energy Conference Proceedings
, Travemünde, Germany (H.S. Stephens, Bedford, UK,
1993
), pp.
428
431
.
20.
L.
Vermeer
,
J.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
510
(
2003
).
21.
C. R.
Shapiro
,
D. F.
Gayme
, and
C.
Meneveau
, “
Modelling yawed wind turbine wakes: A lifting line approach
,”
J. Fluid Mech.
841
,
R1
(
2018
).
22.
P.
Jha
,
M.
Churchfield
,
P.
Moriarty
, and
S.
Schmitz
, “
Accuracy of state-of-the-art actuator-line modeling for wind turbine wakes
,” AIAA Paper No. 2013-0608,
2013
.
23.
G.
Bramesfeld
, “
A higher order vortex-lattice method with a force-free wake
,” Ph.D. thesis (
Pennsylvania State University
,
2006
).
24.
K. H.
Horstmann
, “
Ein Mehrfach-Traglinienverfahren und seine verwendung für entwurf und nachrechnung nichtplanarer flügelanordnungen
,” Ph.D. thesis (
DFVLR Institut Für Entwurfsaerodynamik
,
1987
).
25.
D.
Maniaci
, “
Wind turbine design using a free-wake vortex method with winglet application
,” Ph.D. thesis (
The Pennsylvania State University
,
2013
).
26.
G.
Bramesfeld
and
M. D.
Maughmer
, “
Relaxed-wake vortex-lattice method using distributed vorticity elements
,”
J. Aircr.
45
,
560
(
2008
).
27.
B. J.
Basom
, “
Inviscid wind-turbine analysis using distributed vorticity elements
,” Master's thesis (
Pennsylvania State University
,
2010
).
28.
M.
Munk
, “
Minimum induced drag of aerofoils
,”
Report No. 121
(
NACA
,
1921
).
29.
R.
Eppler
and
S.
Schmid-Göller
, “
A method to calculate the influence of vortex roll-up on the induced drag of wings
,” in
Finite Approximations in Fluid Mechanics II: DFG Priority Research Programme Results, 1986–1988
, Notes on Numerical Fluid Mechanics Vol.
25
(
Friedrich Vieweg
,
1989
).
30.
T.
Burton
,
D.
Sharpe
,
N.
Jenkins
, and
E.
Bossanyi
,
Wind Energy Handbook
(
John Wiley & Sons
,
2001
).
31.
The National Renewable Energy Lab
,
Wt_perf(3.1)
[compter program] (NREL,
2004
).
32.
M. L.
Buhl
,
WT_Perf User's Guide
(NREL,
2004
).
33.
S.
Goldstein
, “
On the vortex theory of screw propellers
,”
Proc. R. Soc. London, Ser. A
123
,
440
465
(
1929
).
34.
A. J.
Verhoeff
, “
Aerodynamics of wind turbine rotors
,” Ph.D. thesis (
University of Twente
,
Enschede, Netherlands
,
2005
).
35.
J.
Sørensen
,
V.
Okulov
, and
N.
Ramos-García
, “
Analytical and numerical solutions to classical rotor designs
,”
Prog. Aerosp. Sci.
130
,
100793
(
2022
).
36.
C. L.
Tibery
and
J. W.
Wrench
, Jr.
, “
Tables of the Goldstein factor
,”
Report No. 1534
(
David Taylor Model Basin, Applied Mathematics Laboratory
,
1964
).
37.
A.
Betz
, “
Schraubenpropeller mit geringstem energieverlust. Mit einem zusatz von l. Prandtl
,”
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
(
1919
), pp.
193
217
.
You do not currently have access to this content.