Anthropogenic carbondioxide (CO2) emissions are a major factor in global warming, requiring significant cuts to combat climate change. A crucial technology to reduce global CO2 concentration is direct air capture (DAC) of CO2. However, existing DAC techniques are expensive because of low CO2 concentrations, and they frequently rely on fossil fuel-based energy. In this article, we investigate how wind turbines can influence local CO2 levels and potentially collaborate with DAC and other technologies. To explore this idea, we performed large-eddy simulations using two 5 MW commercial-scale wind turbines. We incorporated realistic CO2 profiles collected from 13 different global locations across different seasons. The simulations were performed under neutral atmospheric boundary layer conditions. The results demonstrate that the wake recovery mechanism of a wind turbine promotes rapid mixing of CO2 both above and below the turbine blade tips in the wind turbine wake. In cases where the initial concentrations of CO2 were elevated above the turbine, downward entrainment of CO2 occurred. Conversely, when high concentrations of CO2 were present in the lower atmosphere, wind turbines facilitated a decrease in concentration at that layer by up to 138 kg/m within the intermediate wake (within 7 diameters) of the second turbine, T2. These discoveries inspire further investigation into the potential synergies between wind turbines and DAC devices or local CO2 pollutant diverters, depending on the prevailing CO2 profile. Consequently, this article marks the initial showcase of wind turbines' capability to influence CO2 levels by creating an entrainment and removal effect.

1.
IPCC
.
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(
Cambridge University Press
,
Cambridge, United Kingdom and New York, NY
,
2021
).
2.
IPCC
.
Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(
Cambridge University Press
,
Cambridge, United Kingdom and New York, NY
,
2022
).
3.
K. O.
Yoro
and
M. O.
Daramola
, “
CO2 emission sources, greenhouse gases, and the global warming effect
,” in
Advances in Carbon Capture
(
Woodhead Publishing
,
Sawston, UK
,
2020
), pp.
3
28
.
4.
Y.
Fu
et al, “
Factors affecting sustainable process technology adoption: A systematic literature review
,”
J. Cleaner Prod.
205
,
226
251
(
2018
).
5.
J. R. F.
Diógenes
,
J.
Claro
,
J. C.
Rodrigues
, and
M. V.
Loureiro
, “
Barriers to onshore wind energy implementation: A systematic review
,”
Energy Res. Social Sci.
60
,
101337
(
2020
).
6.
L.
Castillo
,
W.
Gutierrez
, and
J.
Gore
, “
Renewable energy saves water and creates jobs
,”
Scientific American
(
2018
).
7.
L.
Luo
,
Y.
Zhuang
,
Q.
Duan
,
L.
Dong
,
Y.
Yu
,
Y.
Liu
,
K.
Chen
, and
X.
Gao
, “
Local climatic and environmental effects of an onshore wind farm in North China
,”
Agric. Meteorol.
308
,
108607
(
2021
).
8.
K.
Xu
,
L.
He
,
H.
Hu
,
S.
Liu
,
Y.
Du
,
Z.
Wang
,
Y.
Li
,
L.
Li
,
A.
Khan
, and
G.
Wang
, “
Positive ecological effects of wind farms on vegetation in China's Gobi desert
,”
Sci. Rep.
9
,
6341
(
2019
).
9.
S.
Baidya Roy
,
S. W.
Pacala
, and
R.
Walko
, “
Can large wind farms affect local meteorology?
,”
J. Geophys. Res.: Atmos.
109
, https://doi.org/10.1029/2004JD004763 (
2004
).
10.
M.
Calaf
,
M. B.
Parlange
, and
C.
Meneveau
, “
Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers
,”
Phys. Fluids
23
,
126603
(
2011
).
11.
D. A.
Rajewski
,
E. S.
Takle
,
J. K.
Lundquist
,
J. H.
Prueger
,
R. L.
Pfeiffer
,
J. L.
Hatfield
,
K. K.
Spoth
, and
R. K.
Doorenbos
, “
Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm
,”
Agric. For. Meteorol.
194
,
175
187
(
2014
).
12.
D.
Siguenza-Alvarado
,
A.
Doosttalab
,
S.
Cheng
,
H.
Bocanegra Evans
,
R. B.
Cal
,
L. P.
Chamorro
, and
L.
Castillo
, “
Exploring the effects of low-level-jets on the energy entrainment of vertical-axis wind turbines
,”
J. Renewable Sustainable Energy
13
,
033310
(
2021
).
13.
N.
Hamilton
,
H.
Suk Kang
,
C.
Meneveau
, and
R.
Bayoán Cal
, “
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
,”
J. Renewable Sustainable Energy
4
,
063105
(
2012
).
14.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
15.
A.
Doosttalab
,
D.
Siguenza-Alvarado
,
V.
Pulletikurthi
,
Y.
Jin
,
H.
Bocanegra Evans
,
L. P.
Chamorro
, and
L.
Castillo
, “
Interaction of low-level jets with wind turbines: On the basic mechanisms for enhanced performance
,”
J. Renewable Sustainable Energy
12
,
053301
(
2020
).
16.
W. H.
Schlesinger
, “
Carbon balance in terrestrial detritus
,”
Annu. Rev. Ecol. Syst.
8
,
51
81
(
1977
).
17.
T.
Machida
,
K.
Kita
,
Y.
Kondo
,
D.
Blake
,
S.
Kawakami
,
G.
Inoue
, and
T.
Ogawa
, “
Vertical and meridional distributions of the atmospheric CO2 mixing ratio between northern midlatitudes and southern subtropics
,”
J. Geophys. Res.: Atmos.
107
,
BIB-5-1
, https://doi.org/10.1029/2001JD000910 (
2002
).
18.
H. Y.
Inoue
and
H.
Matsueda
, “
Measurements of atmospheric CO2 from a meteorological tower in Tsukuba, Japan
,”
Tellus B
53
,
205
219
(
2001
).
19.
T.
Nakazawa
,
T.
Machida
,
S.
Sugawara
,
S.
Murayama
,
S.
Morimoto
,
G.
Hashida
,
H.
Honda
, and
T.
Itoh
, “
Measurements of the stratospheric carbon dioxide concentration over Japan using a balloon-borne cryogenic sampler
,”
Geophys. Res. Lett.
22
,
1229
1232
, https://doi.org/10.1029/95GL01188 (
1995
).
20.
Y.
Inai
,
S.
Aoki
,
H.
Honda
,
H.
Furutani
,
Y.
Matsumi
,
M.
Ouchi
,
S.
Sugawara
,
F.
Hasebe
,
M.
Uematsu
, and
M.
Fujiwara
, “
Balloon-borne tropospheric CO2 observations over the equatorial eastern and western Pacific
,”
Atmos. Environ.
184
,
24
36
(
2018
).
21.
T.
Machida
,
H.
Matsueda
,
Y.
Sawa
,
Y.
Nakagawa
,
K.
Hirotani
,
N.
Kondo
,
K.
Goto
,
T.
Nakazawa
,
K.
Ishikawa
, and
T.
Ogawa
, “
Worldwide measurements of atmospheric CO2 and other trace gas species using commercial airlines
,”
J. Atmos. Oceanic Technol.
25
,
1744
1754
(
2008
).
22.
C.
Park
,
S.-Y.
Park
,
K. R.
Gurney
,
C.
Gerbig
,
J. P.
DiGangi
,
Y.
Choi
, and
H. W.
Lee
, “
Numerical simulation of atmospheric CO2 concentration and flux over the Korean Peninsula using WRF-VPRM model during Korus-AQ 2016 campaign
,”
PLoS One
15
,
e0228106
(
2020
).
23.
B. B.
Stephens
,
K. R.
Gurney
,
P. P.
Tans
,
C.
Sweeney
,
W.
Peters
,
L.
Bruhwiler
,
P.
Ciais
,
M.
Ramonet
,
P.
Bousquet
,
T.
Nakazawa
et al, “
Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2
,”
Science
316
,
1732
1735
(
2007
).
24.
Y.
Miyamoto
,
M.
Inoue
,
I.
Morino
,
O.
Uchino
,
T.
Yokota
,
T.
Machida
,
Y.
Sawa
,
H.
Matsueda
,
C.
Sweeney
,
P.
Tans
et al, “
Atmospheric column-averaged mole fractions of carbon dioxide at 53 aircraft measurement sites
,”
Atmos. Chem. Phys.
13
,
5265
5275
(
2013
).
25.
T.
Chiba
,
Y.
Haga
,
M.
Inoue
,
O.
Kiguchi
,
T.
Nagayoshi
,
H.
Madokoro
, and
I.
Morino
, “
Measuring regional atmospheric CO2 concentrations in the lower troposphere with a non-dispersive infrared analyzer mounted on a UAV, Ogata Village, Akita, Japan
,”
Atmosphere
10
,
487
(
2019
).
26.
Y.
Li
,
J.
Deng
,
C.
Mu
,
Z.
Xing
, and
K.
Du
, “
Vertical distribution of CO2 in the atmospheric boundary layer: Characteristics and impact of meteorological variables
,”
Atmos. Environ.
91
,
110
117
(
2014
).
27.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1988
), Vol.
13
.
28.
M.
Churchfield
,
S.
Lee
, and
P.
Moriarty
,
Overview of the Simulator for Wind Farm Application (SOWFA)
(
National Renewable Energy Laboratory
,
2012
).
29.
M. J.
Churchfield
,
S.
Lee
, and
P. J.
Moriarty
, “
Adding complex terrain and stable atmospheric condition capability to the OpenFOAM-based flow solver of the simulator for on/offshore wind farm applications (SOWFA)
,”
ITM Web Conf.
2
,
02001
(
2014
).
30.
E. W.
Anderson
,
R.
Chow
, and
C. P.
Van Dam
, “
A comparison of the NREL 5-MW wake characteristics using both SOWFA and OVERFLOW2
,” AIAA 2015-0726,
2015
.
31.
X.
Ning
,
M.
Krutova
, and
M.
Bakhoday-Paskyabi
, “
Analysis of offshore wind spectra and coherence under neutral stability condition using the two LES models PALM and SOWFA
,”
J. Phys.: Conf. Ser.
2018
,
012027
(
2021
).
32.
L. A.
Martínez-Tossas
,
M. J.
Churchfield
, and
S.
Leonardi
, “
Large eddy simulations of the flow past wind turbines: Actuator line and disk modeling
,”
Wind Energy
18
,
1047
1060
(
2015
).
33.
L.
Martinez
,
S.
Leonardi
,
M.
Churchfield
, and
P.
Moriarty
, “
A comparison of actuator disk and actuator line wind turbine models and best practices for their use
,” AIAA 2012-0900,
2012
.
34.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary-Layer Meteorol.
174
,
1
59
(
2020
).
35.
J.
Newman
,
J.
Lebron
,
C.
Meneveau
, and
L.
Castillo
, “
Streamwise development of the wind turbine boundary layer over a model wind turbine array
,”
Phys. Fluids
25
,
085108
(
2013
).
36.
S.
Dharmarathne
,
V.
Pulletikurthi
, and
L.
Castillo
, “
Coherent vortical structures and their relation to hot/cold spots in a thermal turbulent channel flow
,”
Fluids
3
,
14
(
2018
).
37.
V.
Pulletikurthi
,
S.
Dharmarathne
,
M.
Tutkun
, and
L.
Castillo
, “
The effects of upstream perturbations on large-scale field and the proliferation of λ2 vortices
,”
Phys. Fluids
33
,
105122
(
2021
).
38.
Y.
Liu
and
C.
Cirillo
, “
Evaluating policies to reduce greenhouse gas emissions from private transportation
,”
Transp. Res. Part D: Transp. Environ.
44
,
219
233
(
2016
).
39.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Springer Science & Business Media
,
1988
), Vol.
13
.
40.
C.-H.
Moeng
, “
A large-eddy-simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
41
,
2052
2062
(
1984
).
41.
C.
Gualtieri
,
A.
Angeloudis
,
F.
Bombardelli
,
S.
Jha
, and
T.
Stoesser
, “
On the values for the turbulent Schmidt number in environmental flows
,”
Fluids
2
,
17
(
2017
).
42.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-MW reference wind turbine for offshore system development
,” Technical Report [
National Renewable Energy Laboratory (NREL)
,
Golden, CO
,
2009
].
43.
S. N.
Gadde
and
R. J.
Stevens
, “
Effect of low-level jet height on wind farm performance
,”
J. Renewable Sustainable Energy
13
,
013305
(
2021
).
You do not currently have access to this content.