Solar energy is a rapidly growing sector, and agrivoltaic farms are playing an increasingly important role in meeting the world's energy needs. However, as the size and complexity of these farms increase, so do the challenges associated with managing them efficiently. This article presents a comprehensive review of the fundamental parameters that underpin agrivoltaic systems. Focusing on the latest research, this review examines the challenges and opportunities intrinsic to the implementation of agrivoltaic energy systems, paying particular attention to the various parameters that contribute to their performance. These parameters encompass a range of factors such as heat islands, shading factors, and surface energy budget. The review underscores the importance of considering a diverse array of parameters when developing agrivoltaic energy systems to optimize their efficiency and effectiveness.

1.
N. M.
Haegel
,
P.
Verlinden
,
M.
Victoria
,
P.
Altermatt
,
H.
Atwater
,
T.
Barnes
,
C.
Breyer
,
C.
Case
,
S.
De Wolf
,
C.
Deline
et al, “
Photovoltaics at multi-terawatt scale: Waiting is not an option
,”
Science
380
,
39
42
(
2023
).
2.
E.
Pursiheimo
,
H.
Holttinen
, and
T.
Koljonen
, “
Inter-sectoral effects of high renewable energy share in global energy system
,”
Renewable Energy
136
,
1119
1129
(
2019
).
3.
D.
Bogdanov
,
M.
Ram
,
A.
Aghahosseini
,
A.
Gulagi
,
A. S.
Oyewo
,
M.
Child
,
U.
Caldera
,
K.
Sadovskaia
,
J.
Farfan
,
L. D. S. N. S.
Barbosa
et al, “
Low-cost renewable electricity as the key driver of the global energy transition towards sustainability
,”
Energy
227
,
120467
(
2021
).
4.
J. C.
Goldschmidt
,
L.
Wagner
,
R.
Pietzcker
, and
L.
Friedrich
, “
Technological learning for resource efficient terawatt scale photovoltaics
,”
Energy Environ. Sci.
14
,
5147
5160
(
2021
).
5.
R.
Vignesh
,
D.
Feldman
,
J.
Desai
, and
R. U. S.
Margolis
,
U.S. Solar photovoltaic system and energy storage cost benchmarks: Q1 2021
, Technical Report, NREL,
2021
.
6.
A.
Glick
,
N.
Ali
,
J.
Bossuyt
,
M.
Calaf
, and
R. B.
Cal
, “
Utility-scale solar PV performance enhancements through system-level modifications
,”
Sci. Rep.
10
,
10505
(
2020
).
7.
A.
Glick
,
N.
Ali
,
J.
Bossuyt
,
G.
Recktenwald
,
M.
Calaf
, and
R. B.
Cal
, “
Infinite photovoltaic solar arrays: Considering flux of momentum and heat transfer
,”
Renewable Energy
156
,
791
803
(
2020
).
8.
A.
Glick
,
S. E.
Smith
,
N.
Ali
,
J.
Bossuyt
,
G.
Recktenwald
,
M.
Calaf
, and
R. B.
Cal
, “
Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms
,”
Sol. Energy
207
,
173
182
(
2020
).
9.
S. E.
Smith
,
A.
Glick
,
J.
Ali
,
N.
Bossuyt
,
J.
McNeal
,
G.
Recktenwald
,
M.
Calaf
, and
R. B.
Cal
, “
Configuration effects on flow dynamics and convective behavior in large-scale solar arrays
,” in
47th IEEE Photovoltaic Specialists Conference (PVSC)
(
IEEE
,
2020
), pp.
2195
2196
.
10.
S. E.
Smith
,
B. J.
Stanislawski
,
B. K.
Eng
,
N.
Ali
,
T. J.
Silverman
,
M.
Calaf
, and
R. B.
Cal
, “
Viewing convection as a solar farm phenomenon broadens modern power predictions for solar photovoltaics
,”
J. Renewable Sustainable Energy
14
,
063502
(
2022
).
11.
E.
Lorenz
, “
The butterfly effect
,”
World Sci. Ser. Nonlinear Sci., Ser. A
39
,
91
94
(
2000
).
12.
N.
Ali
,
N.
Hamilton
,
M.
Calaf
, and
R. B.
Cal
, “
Turbulence kinetic energy budget and conditional sampling of momentum, scalar, and intermittency fluxes in thermally stratified wind farms
,”
J. Turbul.
20
,
32
63
(
2019
).
13.
I. Y.
Hussain
and
N.
Ali
, “
Natural convection heat transfer from a plane wall to thermally stratified environment
,”
J. Eng.
18
,
223
238
(
2012
).
14.
N.
Ali
and
I. Y.
Hussain
, “
Two-dimensional natural convection heat transfer from a heated plate immersed in a thermally stratified medium: Numerical and experimental study
,”
Int. J. Comput. Appl.
179
,
1
8
(
2017
).
15.
H.
Taha
, “
The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas
,”
Sol. Energy
91
,
358
367
(
2013
).
16.
V.
Fthenakis
and
Y.
Yu
, “
Analysis of the potential for a heat island effect in large solar farms
,” in
IEEE 39th Photovoltaic Specialists Conference (PVSC)
(
IEEE
,
2013
), pp.
3362
3366
.
17.
G. A.
Barron-Gafford
,
R. L.
Minor
,
N. A.
Allen
,
A. D.
Cronin
,
A. E.
Brooks
, and
M. A.
Pavao-Zuckerman
, “
The photovoltaic heat island effect: Larger solar power plants increase local temperatures
,”
Sci. Rep.
6
,
35070
(
2016
).
18.
A. M.
Broadbent
,
E. S.
Krayenhoff
,
M.
Georgescu
, and
D. J.
Sailor
, “
The observed effects of utility-scale photovoltaics on near-surface air temperature and energy balance
,”
J. Appl. Meteorol. Climatol.
58
,
989
1006
(
2019
).
19.
E. H.
Adeh
,
S. P.
Good
,
M.
Calaf
, and
C. W.
Higgins
, “
Solar PV power potential is greatest over croplands
,”
Sci. Rep.
9
,
11442
(
2019
).
20.
J. V.
Pham
,
A.
Baniassadi
,
K. E.
Brown
,
J.
Heusinger
, and
D. J.
Sailor
, “
Comparing photovoltaic and reflective shade surfaces in the urban environment: Effects on surface sensible heat flux and pedestrian thermal comfort
,”
Urban Clim.
29
,
100500
(
2019
).
21.
X.
Zhang
and
M.
Xu
, “
Assessing the effects of photovoltaic powerplants on surface temperature using remote sensing techniques
,”
Remote Sens.
12
,
1825
(
2020
).
22.
B.
Viggiano
,
J.
Bossuyt
,
N.
Ali
,
J.
Meyers
, and
R. B.
Cal
, “
Secondary motions above a staggered multi-scale rough wall
,”
J. Fluid Mech.
941
,
R1
(
2022
).
23.
M. R.
Raupach
and
R. H.
Shaw
, “
Averaging procedures for flow within vegetation canopies
,”
Boundary-Layer Meteorol.
22
,
79
90
(
1982
).
24.
T.
Morrison
,
E. R.
Pardyjak
,
M.
Mauder
, and
M.
Calaf
, “
The heat-flux imbalance: The role of advection and dispersive fluxes on heat transport over thermally heterogeneous terrain
,”
Boundary-Layer Meteorol.
183
,
227
247
(
2022
).
25.
E.
Bou-Zeid
,
W.
Anderson
,
G. G.
Katul
, and
L.
Mahrt
, “
The persistent challenge of surface heterogeneity in boundary-layer meteorology: A review
,”
Boundary-Layer Meteorol.
177
,
227
245
(
2020
).
26.
B. J.
Butterworth
,
A. R.
Desai
,
D.
Durden
,
H.
Kadum
,
D.
LaLuzerne
,
M.
Mauder
,
S.
Metzger
,
S.
Paleri
, and
L.
Wanner
, “
Characterizing energy balance closure over a heterogeneous ecosystem using multi-tower eddy covariance
,”
Front. Earth Sci.
11
,
1251138
(
2024
).
27.
B.
Stanislawski
,
F.
Margairaz
,
R. B.
Cal
, and
M.
Calaf
, “
Potential of module arrangements to enhance convective cooling in solar photovoltaic arrays
,”
Renewable Energy
157
,
851
858
(
2020
).
28.
G.-Y.
Qiu
,
H.-Y.
Li
,
Q.-T.
Zhang
,
C.
Wan
,
X.-J.
Liang
, and
X.-Z.
Li
, “
Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture
,”
J. Integr. Agric.
12
,
1307
1315
(
2013
).
29.
K. E.
Brown
,
A.
Baniassadi
,
J. V.
Pham
,
D. J.
Sailor
, and
P. E.
Phelan
, “
Effects of rooftop photovoltaics on building cooling demand and sensible heat flux into the environment for an installation on a white roof
,”
J. Eng. Sustainable Build. Cities
1
,
021001
(
2020
).
30.
Sun'Agri
,
The la pugère experimental station
, Available online,
2021
. https://sunagri.fr/en/project/the-la-pugere-experimental-station/; accessed 13 September 2021.
31.
R.
Hendarti
, “
The influence of the evapotranspiration process of green roof tops on PV modules in the tropics
,” Ph.D. thesis,
National University of Singapore
,
2013
.
32.
J. W. C.
Teng
,
C. B.
Soh
,
S. C.
Devihosur
,
R. H. S.
Tay
, and
S. K.
Jusuf
, “
Effects of agrivoltaic systems on the surrounding rooftop microclimate
,”
Sustainability
14
,
7089
(
2022
).
33.
M.
Trommsdorff
,
S.
Gruber
,
T.
Keinath
,
M.
Kopf
,
C.
Hermann
,
F.
Schönberger
,
P.
Högy
,
S.
Zikeli
,
A.
Ehmann
,
A.
Weselek
et al, Agrivoltaics: Opportunities for agriculture and the energy transition,
Fraunhofer Institute for Solar Energy Systems ISE
,
Breisgau, Germany
,
2020
.
34.
S.
Gorjian
,
E.
Bousi
,
Ö. E.
Özdemir
,
M.
Trommsdorff
,
N. M.
Kumar
,
A.
Anand
,
K.
Kant
, and
S. S.
Chopra
, “
Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology
,”
Renewable Sustainable Energy Rev.
158
,
112126
(
2022
).
35.
S.
Zainali
,
S. M.
Lu
,
B.
Stridh
,
A.
Avelin
,
S.
Amaducci
,
M.
Colauzzi
, and
P. E.
Campana
, “
Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts
,”
Appl. Energy
339
,
120981
(
2023
).
36.
N. C.
Giri
,
R. C. M. R. N.
Shaw
,
S.
Poonia
,
M.
Bajaj
, and
Y.
Belkhier
, “
Agriphotovoltaic system to improve land productivity and revenue of farmer
,” in
IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT)
(
IEEE
,
2022
), pp.
1
5
.
37.
J. D.
Robert
,
W.
Brian
, and
L. H.
Richard
, “
Dynamic relationships between field temperatures and romaine lettuce yield and head quality
,”
Sci. Hortic.
120
,
452
459
(
2009
).
38.
L. M.
Mortensen
and
S. O.
Grimstad
, “
The effect of lighting period and photon flux density on growth of six foliage plants
,”
Sci. Hortic.
41
,
337
342
(
1990
).
39.
K. E.
Cockshull
,
C. J.
Graves
, and
C. R. J.
Cave
, “
The influence of shading on yield of glasshouse tomatoes
,”
J. Hortic. Sci.
67
,
11
24
(
1992
).
40.
L. F. M.
Marcelis
, “
Fruit growth and biomass allocation to the fruits in cucumber. 2. Effect of irradiance
,”
Sci. Hortic.
54
,
123
130
(
1993
).
41.
H. R.
Gislerod
and
L. M.
Mortensen
, “
Effect of light intensity on growth and quality of cut roses
,” in
III International Symposium on Artificial Lighting in Horticulture
(
International Society for Horticultural Science
,
1994
), Vol.
418
, pp.
25
32
.
42.
L. F. M.
Marcelis
,
A. G. M.
Broekhuijsen
,
E.
Meinen
,
E. M. F. M.
Nijs
, and
M. G. M.
Raaphorst
, “
Quantification of the growth response to light quantity of greenhouse grown crops
,” in
V International Symposium on Artificial Lighting in Horticulture
(
International Society for Horticultural Science
,
2005
), Vol.
711
, pp.
97
104
.
43.
F.
Weiguo
,
L.
Pingping
,
W.
Yanyou
, and
T.
Jianjian
, “
Effects of different light intensities on anti-oxidative enzyme activity, quality and biomass in lettuce
,”
Hortic. Sci.
39
,
129
134
(
2012
).
44.
A.
Wahid
,
S.
Gelani
,
M.
Ashraf
, and
M. R.
Foolad
, “
Heat tolerance in plants: An overview
,”
Environ. Exp. Bot.
61
,
199
223
(
2007
).
45.
N. K.
Ruehr
,
R.
Grote
,
S.
Mayr
, and
A.
Arneth
, “
Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress
,”
Tree Physiol.
39
,
1285
1299
(
2019
).
46.
S.
Hartzell
,
M. S.
Bartlett
, and
A.
Porporato
, “
The role of plant water storage and hydraulic strategies in relation to soil moisture availability
,”
Plant Soil
419
,
503
521
(
2017
).
47.
E.
Daly
,
A.
Porporato
, and
I.
Rodriguez-Iturbe
, “
Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part I: Upscaling from hourly to daily level
,”
J. Hydrometeorol.
5
,
546
558
(
2004
).
48.
S.
Hartzell
, “
Ecohydrology of photosynthesis
,” in
Dryland Ecohydrology
(
Springer
,
2019
), pp.
101
120
.
49.
J.
Chopard
,
A.
Bisson
,
G.
Lopez
,
S.
Persello
,
C.
Richert
, and
D.
Fumey
, “
Development of a decision support system to evaluate crop performance under dynamic solar panels
,” in
AIP Conference Proceedings
(
AIP Publishing LLC
,
2021
), Vol.
2361
, p.
050001
.
50.
S. E.
Smith
,
B.
Viggiano
,
N.
Ali
,
T. J.
Silverman
,
M.
Obligado
,
M.
Calaf
, and
R. B.
Cal
, “
Increased panel height enhances cooling for photovoltaic solar farms
,”
Appl. Energy
325
,
119819
(
2022
).
51.
H. J.
Williams
,
K.
Hashad
,
H.
Wang
, and
K. M.
Zhang
, “
The potential for agrivoltaics to enhance solar farm cooling
,”
Appl. Energy
332
,
120478
(
2023
).
52.
Y.
Elamri
,
B.
Cheviron
,
J.-M.
Lopez
,
C.
Dejean
, and
G.
Belaud
, “
Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces
,”
Agric. Water Manage.
208
,
440
453
(
2018
).
53.
H.
Dinesh
and
J. M.
Pearce
, “
The potential of agrivoltaic systems
,”
Renewable Sustainable Energy Rev.
54
,
299
308
(
2016
).
54.
R. J.
Randle-Boggis
,
E.
Lara
,
J.
Onyango
,
E. J.
Temu
, and
S. E.
Hartley
, “
Agrivoltaics in east Africa: Opportunities and challenges
,” in
AIP Conference Proceedings
(
AIP Publishing LLC
,
2021
), Vol.
2361
, p.
090001
.
55.
J. M.
Warren
,
P. J.
Hanson
,
C. M.
Iversen
,
J.
Kumar
,
A. P.
Walker
, and
S. D.
Wullschleger
, “
Root structural and functional dynamics in terrestrial biosphere models–evaluation and recommendations
,”
New Phytol.
205
,
59
78
(
2015
).
56.
L.
Zotarelli
,
M. D.
Dukes
,
C. C.
Romero
,
K. W.
Migliaccio
, and
K. T.
Morgan
, “
Step by step calculation of the Penman–Monteith evapotranspiration (FAO-56 method)
,”
Institute of Food and Agricultural Sciences, University of Florida
,
2010
.
57.
A. L.
Flint
and
S. W.
Childs
, “
Use of the Priestley–Taylor evaporation equation for soil water limited conditions in a small forest clearcut
,”
Agric. Meteorol.
56
,
247
260
(
1991
).
58.
D. I.
Stannard
, “
Comparison of Penman–Monteith, Shuttleworth–Wallace, And modified Priestley–Taylor evapotranspiration models for wildland vegetation in semiarid rangeland
,”
Water Resour. Res.
29
,
1379
1392
, https://doi.org/10.1029/93WR00333 (
1993
).
59.
G. B.
Senay
,
M. E.
Budde
, and
J. P.
Verdin
, “
Enhancing the simplified surface energy balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model
,”
Agric. Water Manage.
98
,
606
618
(
2011
).
60.
G. H.
Hargreaves
and
Z. A.
Samani
, “
Estimating potential evapotranspiration
,”
J. Irrig. Drain. Div.
108
,
225
230
(
1982
).
61.
L.
Turc
, “
Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date
,”
Ann. Agron.
12
,
13
49
(
1961
).
62.
R. G.
Allen
and
W. O.
Pruitt
, “
Rational use of the FAO Blaney–Criddle formula
,”
J. Irrig. Drain. Eng.
112
,
139
155
(
1986
).
63.
M. H.
Riaz
,
H.
Imran
,
R.
Younas
,
M. A.
Alam
, and
N. Z.
Butt
, “
Module technology for agrivoltaics: Vertical bifacial versus tilted monofacial farms
,”
IEEE J. Photovoltaics
11
,
469
477
(
2021
).
64.
M. A.
Al Mamun
,
P.
Dargusch
,
D.
Wadley
,
N. A.
Zulkarnain
, and
A. A.
Aziz
, “
A review of research on agrivoltaic systems
,”
Renewable Sustainable Energy Rev.
161
,
112351
(
2022
).
65.
M.
Laub
,
L.
Pataczek
,
A.
Feuerbacher
,
S.
Zikeli
, and
P.
Högy
, “
Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: A meta-analysis
,”
Agron. Sustainable Develop.
42
,
51
(
2022
).
66.
PVsyst SA
, PVsyst, [Computer software],
2021
, see https://www.pvsyst.com.
67.
Folsom Labs
, HelioScope [Computer software],
2021
, see https://www.folsomlabs.com.
68.
N. R. E. Laboratory
, SAM (system advisor model),
2022
, see https://sam.nrel.gov.
69.
Valentine Software
, PVSOL [Computer software],
2022
, see https://www.valentin-software.com.
70.
J.
Bany
and
J.
Appelbaum
, “
The effect of shading on the design of a field of solar collectors
,”
Sol. Cells
20
,
201
228
(
1987
).
71.
Y.
Cascone
,
V.
Corrado
, and
V.
Serra
, “
Calculation procedure of the shading factor under complex boundary conditions
,”
Sol. Energy
85
,
2524
2539
(
2011
).
72.
P.
Gilman
,
A.
Dobos
,
N. A.
DiOrio
,
J. M.
Freeman
,
S.
Janzou
, and
D.
Ryberg
, “
SAM photovoltaic model technical reference 2016 update
,”
Technical Report NREL/TP–6A20-67399
, 1429291, Sandia,
2018
.
73.
M.
Prilliman
,
J. S.
Stein
,
D.
Riley
, and
G.
Tamizhmani
, “
Transient weighted moving-average model of photovoltaic module back-surface temperature
,”
IEEE J. Photovoltaics
10
,
1053
1060
(
2020
).
74.
C.
Toledo
and
A.
Scognamiglio
, “
Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns)
,”
Sustainability
13
,
6871
(
2021
).
75.
M.
Trommsdorff
,
J.
Kang
,
C.
Reise
,
S.
Schindele
,
G.
Bopp
,
A.
Ehmann
,
A.
Weselek
,
P.
Högy
, and
T.
Obergfell
, “
Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany
,”
Renewable Sustainable Energy Rev.
140
,
110694
(
2021
).
76.
P. E.
Campana
,
B.
Stridh
,
S.
Amaducci
, and
M.
Colauzzi
, “
Optimisation of vertically mounted agrivoltaic systems
,”
J. Cleaner Prod.
325
,
129091
(
2021
).
77.
M.
Reasoner
and
A.
Ghosh
, “
Agrivoltaic engineering and layout optimization approaches in the transition to renewable energy technologies: A review
,”
Challenges
13
,
43
(
2022
).
78.
E.
Mouhib
,
L.
Micheli
,
F. M.
Almonacid
, and
E. F.
Fernández
, “
Overview of the fundamentals and applications of bifacial photovoltaic technology: Agrivoltaics and aquavoltaics
,”
Energies
15
,
8777
(
2022
).
79.
T.
Sarver
,
A.
Al-Qaraghuli
, and
L. L.
Kazmerski
, “
A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches
,”
Renewable Sustainable Energy Rev.
22
,
698
733
(
2013
).
80.
S.
Liu
,
Q.
Yue
,
K.
Zhou
, and
K.
Sun
, “
Effects of particle concentration, deposition and accumulation on photovoltaic device surface
,”
Energy Procedia
158
,
553
558
(
2019
).
81.
M. R.
Maghami
,
H.
Hizam
,
C.
Gomes
,
M. A.
Radzi
,
M. I.
Rezadad
, and
S.
Hajighorbani
, “
Power loss due to soiling on solar panel: A review
,”
Renewable Sustainable Energy Rev.
59
,
1307
1316
(
2016
).
82.
M. S.
El-Shobokshy
and
F. M.
Hussein
, “
Degradation of photovoltaic cell performance due to dust deposition on to its surface
,”
Renewable Energy
3
,
585
590
(
1993
).
83.
S. E.
Smith
,
H.
Djeridi
,
M.
Calaf
,
R. B.
Cal
, and
M.
Obligado
, “
Particle transport-driven flow dynamics and heat transfer modulation in solar photovoltaic modules: Implications on soiling
,”
Sol. Energy
265
,
112084
(
2023
).
84.
A.
Ibrahim
, “
Effect of shadow and dust on the performance of silicon solar cell
,”
J. Basic Appl. Sci. Res.
1
,
222
230
(
2011
).
85.
J. G.
Garza
,
B.
Chong
, and
L.
Zhang
, “
Control of integrated Ćuk converter and photovoltaic modules for maximum power generation
,” in
Third IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)
(
IEEE
,
2012
), pp.
175
181
.
86.
A. N. A.
Ali
,
M. H.
Saied
,
M. Z.
Mostafa
, and
T. M.
Abdel-Moneim
, “
A survey of maximum PPT techniques of PV systems
,” in
IEEE Energytech
(
IEEE
,
2012
), pp.
1
17
.
87.
T.
Logeswaran
and
A.
SenthilKumar
, “
A review of maximum power point tracking algorithms for photovoltaic systems under uniform and non-uniform irradiances
,”
Energy Procedia
54
,
228
235
(
2014
).
88.
S.
Silvestre
,
A.
Boronat
, and
A.
Chouder
, “
Study of bypass diodes configuration on PV modules
,”
Appl. Energy
86
,
1632
1640
(
2009
).
89.
J. C.
Teo
,
R. H. G.
Tan
,
V. H.
Mok
,
V. K.
Ramachandaramurthy
, and
C.
Tan
, “
Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions
,”
Energy
191
,
116491
(
2020
).
90.
B. B.
Pannebakker
,
A. C.
de Waal
, and
W. G. J. M.
van Sark
, “
Photovoltaics in the shade: One bypass diode per solar cell revisited
,”
Prog. Photovoltaics
25
,
836
849
(
2017
).
91.
M.
Dhimish
,
V.
Holmes
,
P.
Mather
, and
M.
Sibley
, “
Novel hot spot mitigation technique to enhance photovoltaic solar panels output power performance
,”
Sol. Energy Mater. Sol. Cells
179
,
72
79
(
2018
).
92.
A.
Woyte
,
J.
Nijs
, and
R.
Belmans
, “
Partial shadowing of photovoltaic arrays with different system configurations: Literature review and field test results
,”
Sol. Energy
74
,
217
233
(
2003
).
93.
S. A.
Kalogirou
, “
Applications of artificial neural-networks for energy systems
,”
Appl. Energy
67
,
17
35
(
2000
).
You do not currently have access to this content.