Excessive emission of carbon dioxide is the leading cause of global warming. Hydrogen has the advantages of high calorific value and zero carbon emissions. It is considered an ideal energy to solve the problem of global warming, so the demand for hydrogen is increasing yearly. Due to economic considerations, methane is the main raw material for hydrogen production. Currently, 48% of the world's hydrogen comes from steam methane reforming. However, this process needs to burn some methane for heating, generating carbon dioxide emissions simultaneously. In order to avoid carbon emissions from hydrogen production, there is an urgent need to develop new methods to produce hydrogen from methane. Because the carbon generated from direct methane cracking exists in solid form while not as carbon dioxide, the direct methane cracking process for hydrogen production has become a hot research topic in recent years. In this paper, a comprehensive review of the research related to catalytic methane cracking for hydrogen production is presented, especially the research on catalytic cracking of methane using solid materials or molten metal media as catalytic media is summarized in detail. Next, a brief overview of the mechanism of catalytic methane cracking for hydrogen production and the characteristics of the generated carbon as a by-product are presented. Finally, the catalytic cracking of methane in molten media or solid materials and the research trend were prospected.

1.
X.
Duan
,
J.
Xu
,
Z.
Wei
et al, “
Metal-free carbon materials for CO2 electrochemical reduction
,”
Adv. Mater.
29
,
1701784
(
2017
).
2.
Y.
Song
,
X.
Zhang
,
K.
Xie
et al, “
High-temperature CO2 electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects
,”
Adv. Mater.
31
,
1902033
(
2019
).
3.
J. F.
Dean
, “
Old methane and modern climate change. Old methane is less important for our immediate future than contemporary sources
,”
Science
367
,
846
848
(
2020
).
4.
H.
Dotan
,
A.
Landman
,
S. W.
Sheehan
et al, “
Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting
,”
Nat. Energy
4
,
786
795
(
2019
).
5.
S.
Stephens-Romero
,
M.
Carreras-Sospedra
,
J.
Brouwer
et al, “
Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles
,”
Environ. Sci. Technol.
43
,
9022
9029
(
2009
).
6.
Q.
Li
,
X.
Lin
,
Q.
Luo
,
Y.
Chen
et al, “
Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review
,”
Int. J. Miner., Metall. Mater.
29
,
32
48
(
2022
).
7.
Z.
Fan
,
W.
Weng
,
J.
Zhou
et al, “
Catalytic decomposition of methane to produce hydrogen: A review
,”
J. Energy Chem.
58
,
415
430
(
2021
).
8.
J.
Tang
,
M.-s.
Chu
,
F.
Li
et al, “
Development and progress on hydrogen metallurgy
,”
Int. J. Miner. Metall. Mater.
27
,
713
723
(
2020
).
9.
J.
Zhang
,
J.
Schenk
,
Z.
Liu
et al, “
Editorial for special issue on hydrogen metallurgy
,”
Int. J. Miner. Metall.
29
,
1817
1819
(
2022
).
10.
M. G.
Rasul
,
M. A.
Hazrat
,
M. A.
Sattar
et al, “
The future of hydrogen: Challenges on production, storage and applications
,”
Energy Convers. Manage.
272
,
116326
(
2022
).
11.
W. N. A. W.
Yusoff
,
N. A.
Baharuddin
,
M. R.
Somalu
et al, “
Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells
,”
Int. J. Miner. Metall. Mater.
30
,
1933
1956
(
2023
).
12.
A.
Atkinson
,
S.
Barnett
,
R. J.
Gorte
et al, “
Advanced anodes for high-temperature fuel cells
,”
Nat. Mater.
3
,
17
27
(
2004
).
13.
J.
Song
,
Z.
Zhao
,
X.
Zhao
et al, “
Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH
,”
Int. J. Miner. Metall. Mater.
24
,
1183
1191
(
2017
).
14.
F. M.
Nyahuma
,
L.
Zhang
,
M.
Song
et al, “
Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst
,”
Int. J. Miner. Metall. Mater.
29
,
1788
1797
(
2022
).
15.
N.
Xu
,
Z.
Yuan
,
Z.
Ma
et al, “
Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2
,”
Int. J. Miner. Metall. Mater.
30
,
54
62
(
2023
).
16.
J.
Zhang
,
B.
Zhang
,
X.
Xie
et al, “
Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review
,”
Int. J. Miner. Metall. Mater.
30
,
14
24
(
2023
).
17.
Y.
He
,
L.
Zhu
,
L.
Li
et al, “
Hydrogen and power cogeneration based on chemical looping combustion: Is it capable of reducing carbon emissions and the cost of production?
,”
Energy Fuels
34
,
3501
3512
(
2020
).
18.
A. S.
Damle
, “
Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation—Experimental studies
,”
J. Power Sources
186
,
167
177
(
2009
).
19.
X.
Liu
,
G.
Liu
,
J.
Xue
et al, “
Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues
,”
Int. J. Miner. Metall. Mater.
29
,
1073
1089
(
2022
).
20.
R. G.
Lemus
and
J. M.
Martínez Duar
, “
Updated hydrogen production costs and parities for conventional and renewable technologies
,”
Int. J. Hydrogen Energy
35
,
3929
3936
(
2010
).
21.
S.
Abanades
and
G.
Flamant
, “
Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking
,”
Int. J. Hydrogen Energy
32
,
1508
1515
(
2007
).
22.
D.
Paxman
,
S.
Trottier
,
M.
Nikoo
et al, “
Initial experimental and theoretical investigation of solar molten media methane cracking for hydrogen production
,”
Energy Procedia
49
,
2027
2036
(
2014
).
23.
P. H. J.
Conti
,
J.
Diefenderfer
,
A.
LaRose
et al, in
International Energy Outlook 2016 With Projections to 2040
[
USDOE Energy Information Administration (EIA), Office of Energy Analysis
,
Washington, DC
,
2016
].
24.
B.
Parkinson
,
P.
Balcombe
,
J. F.
Speirs
et al, “
Levelized cost of CO2 mitigation from hydrogen production routes
,”
Energy Environ. Sci.
12
,
19
40
(
2019
).
25.
N.
Muradov
,
F.
Smith
,
C.
Huang
, and
A.
T-Raissi
, “
Autothermal catalytic pyrolysis of methane as a new route to hydrogen production with reduced CO2 emissions
,”
Catal. Today
116
,
281
288
(
2006
).
26.
M. J.
Lázaro
,
J. L.
Pinilla
,
R.
Utrilla
et al, “
H2–CH4 mixtures produced by carbon-catalyzed methane decomposition as a fuel for internal combustion engines
,”
Energy Fuels
24
,
3340
3345
(
2010
).
27.
E. K.
Lee
,
S. Y.
Lee
,
G. Y.
Han
et al, “
Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production
,”
Carbon
42
,
2641
2648
(
2004
).
28.
I.
Suelves
,
M. J.
Lázaro
,
R.
Moliner
,
J. L.
Pinilla
et al, “
Hydrogen production by methane decarbonization: Carbonaceous catalysts
,”
Int. J. Hydrogen Energy
32
,
3320
3326
(
2007
).
29.
S.
Kazemi
,
S. M.
Alavi
, and
M.
Rezaei
, “
Influence of various spinel materials supported Ni catalysts on thermocatalytic decomposition of methane for the production of COx-free hydrogen
,”
Fuel Process. Technol.
240
,
107575
(
2023
).
30.
Y.
Echegoyen
,
I.
Suelves
,
M. J.
Lázaro
et al, “
Hydrogen production by thermocatalytic decomposition of methane over Ni-Al and Ni-Cu-Al catalysts: Effect of calcination temperature
,”
J. Power Sources
169
,
150
157
(
2007
).
31.
M. A.
Ermakova
,
D. Y.
Ermakov
, and
G. G.
Kuvshinov
, “
Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts
,”
Appl. Catal., A
201
,
61
70
(
2000
).
32.
T.
Zhang
and
M. D.
Amiridis
, “
Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts
,”
Appl. Catal., A
167
,
161
172
(
1998
).
33.
J.
Alves Silva
,
J. B.
Oliveira Santos
,
D.
Torres
et al, “
Natural Fe-based catalysts for the production of hydrogen and carbon nanomaterials via methane decomposition
,”
Int. J. Hydrogen Energy
46
,
35137
35148
(
2021
).
34.
P.
Forzatti
and
L.
Lietti
, “
Catalyst deactivation
,”
Catal. Today
52
,
165
181
(
1999
).
35.
C. H.
Bartholomew
, “
Mechanisms of catalyst deactivation
,”
Appl. Catal. A-Gen.
212
,
17
60
(
2001
).
36.
H. F.
Abbas
and
W. M. A. W.
Daud
, “
Thermocatalytic decomposition of methane for hydrogen production using activated carbon catalyst: Regeneration and characterization studies
,”
Int. J. Hydrogen Energy
34
,
8034
8045
(
2009
).
37.
U. P. M.
Ashik
,
W. M. A.
Wan Daud
, and
H. F.
Abbas
, “
Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane—A review
,”
Renewable Sustainable Energy Rev.
44
,
221
256
(
2015
).
38.
R. Y.
Kannah
,
S.
Kavitha
,
Preethi
et al, “
Techno-economic assessment of various hydrogen production methods—A review
,”
Bioresour. Technol.
319
,
124175
(
2021
).
39.
H. F.
Abbas
and
W. M. A.
Wan Daud
, “
Hydrogen production by methane decomposition: A review
,”
Int. J. Hydrogen Energy
35
,
1160
1190
(
2010
).
40.
J.
Raza
,
A. H.
Khoja
,
M.
Anwar
et al, “
Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems
,”
Renewable Sustainable Energy Rev.
168
,
112774
(
2022
).
41.
M.
McConnachie
,
M.
Konarova
, and
S.
Smart
, “
Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production
,”
Int. J. Hydrogen Energy
48
,
25660
25682
(
2023
).
42.
M.
Msheik
,
S.
Rodat
, and
S.
Abanades
, “
Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis
,”
Energies
14
,
3107
(
2021
).
43.
J. L.
Pinilla
,
I.
Suelves
,
R.
Utrilla
et al, “
Hydrogen production by thermo-catalytic decomposition of methane regeneration of active carbons using CO2
,”
J. Power Sources
169
,
103
109
(
2007
).
44.
K.
Harun
,
S.
Adhikari
, and
H.
Jahromi
, “
Hydrogen production via thermocatalytic decomposition of methane using carbon-based catalysts
,”
RSC Adv.
10
,
40882
40893
(
2020
).
45.
J.
Wang
,
L.
Jin
,
Y.
Li
, and
H.
Hu
, “
Preparation of Fe-doped carbon catalyst for methane decomposition to hydrogen
,”
Ind. Eng. Chem. Res.
56
,
11021
11027
(
2017
).
46.
J.
Zhang
,
L.
Jin
,
Y.
Li
et al, “
Hierarchical porous carbon catalyst for simultaneous preparation of hydrogen and fibrous carbon by catalytic methane decomposition
,”
Int. J. Hydrogen Energy
38
,
8732
8740
(
2013
).
47.
F.
Liu
,
L.
Yang
, and
C.
Song
, “
Chemical looping hydrogen production using activated carbon and carbon black as multi-function carriers
,”
Int. J. Hydrogen Energy
43
,
5501
5511
(
2018
).
48.
D. P.
Serrano
,
J. A.
Botas
, and
R.
Guil-Lopez
, “
H2 production from methane pyrolysis over commercial carbon catalysts: Kinetic and deactivation study
,”
Int. J. Hydrogen Energy
34
,
4488
4494
(
2009
).
49.
K.
Srilatha
,
V.
Viditha
,
D.
Srinivasulu
et al, “
Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black
,”
Environ. Sci. Pollut. Res.
23
,
9303
9311
(
2016
).
50.
M.
Pudukudy
,
A.
Kadier
,
Z.
Yaakob
, and
M. S.
Takriff
, “
Non-oxidative thermocatalytic decomposition of methane into COx free hydrogen and nanocarbon over unsupported porous NiO and Fe2O3 catalysts
,”
Int. J. Hydrogen Energy
41
,
18509
18521
(
2016
).
51.
L.
Zhou
and
J. M.
Basset
, “
Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking
,”
Fuel
181
,
805
810
(
2016
).
52.
A.
Venugopal
,
S.
Naveen Kumar
,
J.
Ashok
et al, “
Hydrogen production by catalytic decomposition of methane over Ni/SiO2
,”
Int. J. Hydrogen Energy
32
,
1782
1788
(
2007
).
53.
S.
Takenaka
,
Y.
Shigeta
,
E.
Tanabe
, and
K.
Otsuka
, “
Methane decomposition into hydrogen and carbon nanofibers over supported Pd–Ni catalysts
,”
J. Catal.
220
,
468
477
(
2003
).
54.
J. I.
Villacampa
,
C.
Royo
,
E.
Romeo
et al, “
Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts. Reaction and regeneration studies
,”
Appl. Catal., A
252
,
363
383
(
2003
).
55.
A. M.
Amin
,
E.
Croiset
,
C.
Constantinou
, and
W.
Epling
, “
Methane cracking using Ni supported on porous and non-porous alumina catalysts
,”
Int. J. Hydrogen Energy
37
,
9038
9048
(
2012
).
56.
N.
Bayat
,
M.
Rezaei
, and
F.
Meshkani
, “
Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni-Pd/Al2O3 catalyst
,”
Int. J. Hydrogen Energy
41
,
5494
5503
(
2016
).
57.
N.
Bayat
,
M.
Rezaei
, and
F.
Meshkani
, “
Methane decomposition over Ni–Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber
,”
Int. J. Hydrogen Energy
41
,
1574
1584
(
2016
).
58.
N.
Bayat
,
F.
Meshkani
, and
M.
Rezaei
, “
Thermocatalytic decomposition of methane to COx-free hydrogen and carbon over Ni-Fe-Cu/Al2O3 catalysts
,”
Int. J. Hydrogen Energy
41
,
13039
13049
(
2016
).
59.
W.
Ahmed
,
A. E.
Awadallah
, and
A. A.
Aboul-Enein
, “
Ni/CeO2-Al2O3 catalysts for methane thermo-catalytic decomposition to COx-free H2 production
,”
Int. J. Hydrogen Energy
41
,
18484
18493
(
2016
).
60.
B.
Gao
,
I. W.
Wang
,
L.
Ren
, and
J.
Hu
, “
Catalytic methane decomposition over bimetallic transition metals supported on composite aerogel
,”
Energy Fuels
33
,
9099
9106
(
2019
).
61.
A.
Konieczny
,
K.
Mondal
,
T.
Wiltowski
, and
P.
Dydo
, “
Catalyst development for thermocatalytic decomposition of methane to hydrogen
,”
Int. J. Hydrogen Energy
33
,
264
272
(
2008
).
62.
A. F.
Cunha
,
J. J. M.
Órfão
, and
J. L.
Figueiredo
, “
Methane decomposition on Fe-Cu Raney-type catalysts
,”
Fuel Process. Technol.
90
,
1234
1240
(
2009
).
63.
A. H.
Fakeeha
,
A. A.
Ibrahim
,
W. U.
Khan
et al, “
Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst
,”
Arabian J. Chem.
11
,
405
414
(
2018
).
64.
J. L.
Pinilla
,
R.
Utrilla
,
R. K.
Karn
et al, “
High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition
,”
Int. J. Hydrogen Energy
36
,
7832
7843
(
2011
).
65.
A. E.
Awadallah
,
A. A.
Aboul-Enein
,
D. S.
El-Desouki
et al, “
Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VIII catalysts
,”
Appl. Surf.
296
,
100
107
(
2014
).
66.
V.
Ramasubramanian
,
H.
Ramsurn
, and
G. L.
Price
, “
Hydrogen production by catalytic decomposition of methane over Fe based bi-metallic catalysts supported on CeO2-ZrO2
,”
Int. J. Hydrogen Energy
45
,
12026
12036
(
2020
).
67.
A. S.
Al-Fatesh
,
A. H.
Fakeeha
,
W. U.
Khan
et al, “
Production of hydrogen by catalytic methane decomposition over alumina supported mono-, bi- and tri-metallic catalysts
,”
Int. J. Hydrogen Energy
41
,
22932
22940
(
2016
).
68.
H.
Dai
,
Z.
Song
,
H.
Wang
, and
Q.
Cui
, “
Efficient production of hydrogen by catalytic decomposition of methane with Fe-substituted Efficient production of hydrogen by catalytic decomposition of methane with Fe-substituted hexaaluminate coated packed bed
,”
Energy
273
,
127272
(
2023
).
69.
L.
Zhou
,
L. R.
Enakonda
,
S.
Li
et al, “
Iron ore catalysts for methane decomposition to make COx free hydrogen and carbon nano material
,”
J. Taiwan Inst. Chem. E
87
,
54
63
(
2018
).
70.
M.
Dawkins
,
D.
Saal
,
J. F.
Marco
et al, “
An iron ore-based catalyst for producing hydrogen and metallurgical carbon via catalytic methane pyrolysis for decarbonization of the steel industry
,”
Int. J. Hydrogen Energy
48
,
21765
21777
(
2023
).
71.
J. L.
Pinilla
,
R.
Utrilla
,
M. J.
Lázaro
et al, “
Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor
,”
Fuel Process. Technol.
92
,
1480
1488
(
2011
).
72.
D.
Torres
,
S.
Llobet
,
J. L.
Pinilla
et al, “
Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor
,”
J. Nat. Gas Chem.
21
,
367
373
(
2012
).
73.
A. A.
Ibrahim
,
A. H.
Fakeeha
,
A. S.
Al-Fatesh
et al, “
Methane decomposition over iron catalyst for hydrogen production
,”
Int. J. Hydrogen Energy
40
,
7593
7600
(
2015
).
74.
B. J.
Leal Pérez
,
J. A.
Medrano Jiménez
,
R.
Bhardwaj
et al, “
Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment
,”
Int. J. Hydrogen Energy
46
,
4917
4935
(
2021
).
75.
R.
Roper
,
M.
Harkema
,
P.
Sabharwall
et al, “
Molten salt for advanced energy applications: A review
,”
Ann. Nucl. Energy
169
,
108924
(
2022
).
76.
P.
Baumli
and
G.
Kaptay
, “
Wettability of carbon surfaces by pure molten alkali chlorides and their penetration into a porous graphite substrate
,”
Mater. Sci. Eng., A
495
,
192
196
(
2008
).
77.
F.
Wei
, “
Research status of liquid metal wetting on graphite surface
,”
Gansu Sci. Technol.
35
,
32
35
(
2019
) (in Chinese).
78.
C.
Palmer
,
E.
Bunyan
,
J.
Gelinas
et al, “
CO2-free hydrogen production by catalytic pyrolysis of hydrocarbon feedstocks in molten Ni-Bi
,”
Energy Fuels
34
,
16073
16080
(
2020
).
79.
J.
Zeng
,
M.
Tarazkar
,
T.
Pennebaker
et al, “
Catalytic methane pyrolysis with liquid and vapor phase tellurium
,”
ACS Catal.
10
,
8223
8230
(
2020
).
80.
N.
Rahimi
,
D.
Kang
,
J.
Gelinas
et al, “
Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts
,”
Carbon
151
,
181
191
(
2019
).
81.
N.
Zaghloul
,
S.
Kodama
, and
H.
Sekiguchi
, “
Hydrogen production by methane pyrolysis in a molten-metal bubble column
,”
Chem. Eng. Technol.
44
,
1986
1993
(
2021
).
82.
D. C.
Upham
,
V.
Agarwal
,
A.
Khechfe
et al, “
Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon
,”
Science
358
,
917
921
(
2017
).
83.
K.
Wang
,
W. S.
Li
, and
X. P.
Zhou
, “
Hydrogen generation by direct decomposition of hydrocarbons over molten magnesium
,”
J. Mol. Catal. A
283
,
153
157
(
2008
).
84.
R.
Aiello
,
J. E.
Fiscus
,
H.-C.
zur Loye
et al, “
Hydrogen production via the direct cracking of methane over Ni/SiO2: Catalyst deactivation and regeneration
,”
Appl. Catal., A
192
,
227
234
(
2000
).
85.
See https://ptable.com/#Properties for “
Periodic Table-Ptable
.”
86.
M.
Serban
,
M. A.
Lewis
,
C. L.
Marshall
et al, “
Hydrogen production by direct contact pyrolysis of natural gas
,”
Energy Fuels
17
,
705
713
(
2003
).
87.
I. V.
Kudinov
,
A. A.
Pimenov
,
Y. A.
Kryukov
et al, “
A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin
,”
Int. J. Hydrogen Energy
46
,
10183
10190
(
2021
).
88.
M.
Msheik
,
S.
Rodat
, and
S.
Abanades
, “
Enhancing molten tin methane pyrolysis performance for hydrogen and carbon production in a hybrid solar/electric bubbling reactor
,”
Int. J. Hydrogen Energy
49
,
962
980
(
2024
).
89.
I.
Schultz
and
D. W.
Agar
, “
Decarbonisation of fossil energy via methane pyrolysis using two reactor concepts: Fluid wall flow reactor and molten metal capillary reactor
,”
Int. J. Hydrogen Energy
40
,
11422
11427
(
2015
).
90.
A. A.
Munera Parra
and
D. W.
Agar
, “
Molten metal capillary reactor for the high-temperature pyrolysis of methane
,”
Int. J. Hydrogen Energy
42
,
13641
13648
(
2017
).
91.
M.
Plevan
,
T.
Geißler
,
A.
Abánades
et al, “
Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis
,”
Int. J. Hydrogen Energy
40
,
8020
8033
(
2015
).
92.
T.
Geißler
,
A.
Abánades
,
A.
Heinzel
et al, “
Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed
,”
Chem. Eng. J.
299
,
192
200
(
2016
).
93.
T.
Geißler
,
M.
Plevan
,
A.
Abánades
et al, “
Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed
,”
Int. J. Hydrogen Energy
40
,
14134
14146
(
2015
).
94.
T.-G.
Wi
,
Y.-J.
Park
,
U.
Lee
, and
Y.-B.
Kang
, “
Methane pyrolysis rate measurement using electromagnetic levitation techniques for turquoise hydrogen production: Liquid In, Ga, Bi, Sn, and Cu as catalysts
,”
Chem. Eng. J.
460
,
141558
(
2023
).
95.
C.
Palmer
,
M.
Tarazkar
,
H. H.
Kristoffersen
et al, “
Methane pyrolysis with a molten Cu-Bi alloy catalyst
,”
ACS Catal.
9
,
8337
8345
(
2019
).
96.
D.
Scheiblehner
,
D.
Neuschitzer
,
S.
Wibner
et al, “
Hydrogen production by methane pyrolysis in molten binary copper alloys
,”
Int. J. Hydrogen Energy
48
,
6233
6243
(
2023
).
97.
J.
Kim
,
C.
Oh
,
H.
Oh
et al, “
Catalytic methane pyrolysis for simultaneous production of hydrogen and graphitic carbon using a ceramic sparger in a molten NiSn alloy
,”
Carbon
207
,
1
12
(
2023
).
98.
L.
Chen
,
Z.
Song
,
S.
Zhang
et al, “
Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis
,”
Science
381
,
857
861
(
2023
).
99.
D.
Kang
,
N.
Rahimi
,
M. J.
Gordon
et al, “
Catalytic methane pyrolysis in molten MnCl2-KCl
,”
Appl. Catal., B
254
,
659
666
(
2019
).
100.
D.
Kang
,
C.
Palmer
,
D.
Mannini
et al, “
Catalytic methane pyrolysis in molten alkali chloride salts containing iron
,”
ACS Catal.
10
,
7032
7042
(
2020
).
101.
J.
Boo
,
E. H.
Ko
,
N. K.
Park
et al, “
Methane pyrolysis in molten potassium chloride: An experimental and economic analysis
,”
Energies
14
,
8182
(
2021
).
102.
B.
Parkinson
,
C. F.
Patzschke
,
D.
Nikolis
et al, “
Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties
,”
Int. J. Hydrogen Energy
46
,
6225
6238
(
2021
).
103.
Y.-G.
Noh
,
Y. J.
Lee
,
J.
Kim
et al, “
Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads
,”
Chem. Eng. J.
428
,
131095
(
2022
).
104.
B.
Parkinson
,
C. F.
Patzschke
,
D.
Nikolis
et al, “
Molten salt bubble columns for low-carbon hydrogen from CH4 pyrolysis: Mass transfer and carbon formation mechanisms
,”
Chem. Eng. J.
417
,
127407
(
2021
).
105.
C. F.
Patzschke
,
B.
Parkinson
,
J. J.
Willis
et al, “
Co-Mn catalysts for H2 production via methane pyrolysis in molten salts
,”
Chem. Eng. J.
414
,
128730
(
2021
).
106.
M.
Msheik
,
S.
Rodat
, and
S.
Abanades
, “
Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors
,”
Energy
260
,
124943
(
2022
).
107.
B.
Parkinson
,
J. W.
Matthews
,
T. B.
McConnaughy
et al, “
Techno-economic analysis of methane pyrolysis in molten metals: Decarbonizing natural gas
,”
Chem. Eng. Technol.
40
,
1022
1030
(
2017
).
108.
T.
Ruuska
,
J.
Vinha
, and
H.
Kivioja
, “
Measuring thermal conductivity and specific heat capacity values of inhomogeneous materials with a heat flow meter apparatus
,”
J. Build. Eng.
9
,
135
141
(
2017
).
109.
Y.
He
,
H.
Chang
,
D.
Wang
et al, “
Progress of hydrogen production from methane cracking and carbon materials by molten metal method
,”
Chem. Ind. Eng. Prog.
42
,
1270
1280
(
2023
) (in Chinese).
110.
C.-J.
Chen
,
M. H.
Back
, and
R. A.
Back
, “
The thermal decomposition of methane. I. Kinetics of the primary decompositionto C2H6 + H2; Rate constant for the homogeneous unimolecular dissociation of methane and its pressure dependence
,”
Can. J. Chem.
53
,
3580
3590
(
1975
).
111.
C.-J.
Chen
,
M. H.
Back
, and
R. A.
Back
, “
The thermal decomposition of methane. II. Secondary reactions, autocatalysis and carbon formation; Non-Arrhenius behavior in the reaction of CH3 with ethane
,”
Can. J. Chem.
54
,
3175
3184
(
1976
).
112.
C.
Palmer
,
M.
Tarazkar
,
M. J.
Gordon
et al, “
Methane pyrolysis in low-cost alkali-halide molten salts at high temperatures
,”
Sustainable Energy Fuels
5
(
23
),
6107
6123
(
2021
).
113.
D.
Bae
,
Y.
Kim
,
E. H.
Ko
et al, “
Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures
,”
Appl. Energy
336
,
120810
(
2023
).
114.
R. A.
Dagle
,
V.
Dagle
,
M. D.
Bearden
et al,
An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products
(
Pacific Northwest National Lab
,
Richland, WA
,
2017
).
You do not currently have access to this content.