With the wide application of high proportion of distributed clean energy in regional microgrids, the issue of maximizing the utilization of renewable energy among multi-microgrids has become a research hotspot. Based on the proposed multi-microgrids' energy collaborative optimization and complementation model, a multi-microgrids' energy real-time optimization management and dispatch strategy is proposed that fully considers the real-time complementarity of renewable energy between multi-microgrids and achieves the best coordinated dispatch of energy. Two typical scenarios were set up in the IEEE 33-bus network model for verification, and the synergistic effects of different schemes were compared and set up. The data obtained demonstrate that the dispatch and management strategy proposed in this paper can achieve the maximum integration of renewable energy and the lowest operating cost among multi-microgrids, and it also validates the real-time, feasibility, and effectiveness of the proposed strategy.

1.
T.
Sueyoshi
,
F.
Mo
, and
D. D.
Wang
, “
Sustainable development of countries all over the world and the impact of renewable energy
,”
Renewable Energy
184
,
320
331
(
2022
).
2.
F.
Belaïd
and
M. H.
Zrelli
, “
Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries
,”
Energy Policy
133
,
110929
(
2019
).
3.
M.
Liu
and
K.
Lo
, “
Multi-actor perspective, socio-technical barriers, and microgrid development in China
,”
Electr. J.
35
(
7
),
107158
(
2022
).
4.
J. M.
Raya-Armenta
,
N.
Bazmohammadi
,
J. G.
Avina-Cervantes
,
D.
Sáez
,
J. C.
Vasquez
, and
J. M.
Guerrero
, “
Energy management system optimization in islanded microgrids: An overview and future trends
,”
Renewable Sustainable Energy Rev.
149
,
111327
(
2021
).
5.
Md.
Fatin Ishraque
,
Sk. A.
Shezan
,
M. M.
Ali
, and
M. M.
Rashid
, “
Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources
,”
Appl. Energy
292
,
116879
(
2021
).
6.
L.
Huang
,
W.
Sun
,
Q.
Li
, and
W.
Li
, “
Distributed real-time economic dispatch for islanded microgrids with dynamic power demand
,”
Appl. Energy
342
,
121156
(
2023
).
7.
H.
Zhang
,
G.
Li
, and
S.
Wang
, “
Optimization dispatching of isolated island microgrid based on improved particle swarm optimization algorithm
,”
Energy Rep.
8
,
420
428
(
2022
).
8.
M. B.
Abdelghany
,
V.
Mariani
,
D.
Liuzza
, and
L.
Glielmo
, “
Hierarchical model predictive control for islanded and grid-connected microgrids with wind generation and hydrogen energy storage systems
,”
Int. J. Hydrogen Energy
51
,
595
610
(
2023
).
9.
S.
Basak
and
B.
Bhattacharyya
, “
Optimal scheduling in demand-side management based grid-connected microgrid system by hybrid optimization approach considering diverse wind profiles
,”
ISA Trans.
139
,
357
375
(
2023
).
10.
Y.
Yang
,
M.
Wang
,
G.
Geng
, and
Q.
Jiang
, “
Energy management of microgrid considering EV integration based on charging reservation information
,” paper presented at the
IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)
(
IEEE
,
2021
).
11.
A.
Nawaz
,
M.
Zhou
,
J.
Wu
, and
C.
Long
, “
A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network
,”
Appl. Energy
323
,
119596
(
2022
).
12.
A.
Kargarian Marvasti
,
Y.
Fu
,
S.
DorMohammadi
, and
M.
Rais-Rohani
, “
Optimal operation of active distribution grids: A system of systems framework
,”
IEEE Trans. Smart Grid
5
(
3
),
1228
1237
(
2014
).
13.
J.
Wu
and
X.
Guan
, “
Coordinated multi-microgrids optimal control algorithm for smart distribution management system
,”
IEEE Trans. Smart Grid
4
(
4
),
2174
2181
(
2013
).
14.
N.
Nikmehr
and
S.
Najafi Ravadanegh
, “
Optimal power dispatch of multi-microgrids at future smart distribution grids
,”
IEEE Trans. Smart Grid
6
(
4
),
1648
1657
(
2015
).
15.
M.
Xie
,
X.
Ji
,
X.
Hu
,
P.
Cheng
,
Y.
Du
, and
M.
Liu
, “
Autonomous optimized economic dispatch of active distribution system with multi-microgrids
,”
Energy
153
,
479
489
(
2018
).
16.
T.
Lu
,
Z.
Wang
,
Q.
Ai
, and
W.-J.
Lee
, “
Interactive model for energy management of clustered microgrids
,”
IEEE Trans. Ind. Appl.
53
(
3
),
1739
1750
(
2017
).
17.
W.
Zhang
and
Y.
Xu
, “
Distributed optimal control for multiple microgrids in a distribution network
,”
IEEE Trans. Smart Grid
10
(
4
),
3765
3779
(
2019
).
18.
X.
Chen
,
J.
Zhai
,
Y.
Jiang
,
C.
Ni
,
S.
Wang
, and
P.
Nimmegeers
, “
Decentralized coordination between active distribution network and multi-microgrids through a fast decentralized adjustable robust operation framework
,”
Sustainable Energy, Grids Networks
34
,
101068
(
2023
).
19.
P.
Wu
,
W.
Huang
,
N.
Tai
, and
S.
Liang
, “
A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection
,”
Appl. Energy
210
,
1002
1016
(
2018
).
20.
W.
Liu
,
W.
Gu
,
J.
Wang
,
W.
Yu
, and
X.
Xi
, “
Game theoretic non-cooperative distributed coordination control for multi-microgrids
,”
IEEE Trans. Smart Grid
9
(
6
),
6986
6997
(
2018
).
21.
H.
Gao
,
S.
Xu
,
Y.
Liu
,
L.
Wang
,
Y.
Xiang
, and
J.
Liu
, “
Decentralized optimal operation model for cooperative microgrids considering renewable energy uncertainties
,”
Appl. Energy
262
,
114579
(
2020
).
22.
Y.
Jia
,
P.
Wen
,
Y.
Yan
, and
L.
Huo
, “
Joint operation and transaction mode of rural multi microgrid and distribution network
,”
IEEE Access
9
,
14409
14421
(
2021
).
23.
Y.
Cao
et al, “
Optimal energy management for multi-microgrid under a transactive energy framework with distributionally robust optimization
,”
IEEE Trans. Smart Grid
13
(
1
),
599
612
(
2022
).
24.
L.
Gao
and
L.
Ma
, “
Coordinated energy management of networked microgrids in the distribution market
,” paper presented at the
IEEE 5th Conference on Energy Internet and Energy System Integration (EI2)
(
IEEE
,
2021
).
25.
M.
Daneshvar
,
B.
Mohammadi-Ivatloo
,
M.
Abapour
, and
S.
Asadi
, “
Energy exchange control in multiple microgrids with transactive energy management
,”
J. Mod. Power Syst. Clean Energy
8
(
4
),
719
726
(
2020
).
26.
X.
Yan
et al, “
Peer-to-peer transactive energy trading of multiple microgrids considering renewable energy uncertainty
,”
Int. J. Electr. Power Energy Syst.
152
,
109235
(
2023
).
27.
H.
Wang
,
H.
Xing
,
Y.
Luo
, and
W.
Zhang
, “
Optimal scheduling of micro-energy grid with integrated demand response based on chance-constrained programming
,”
Int. J. Electr. Power Energy Syst.
144
,
108602
(
2023
).
28.
Z.
Li
and
Y.
Xu
, “
Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes
,”
Appl. Energy
210
,
974
986
(
2018
).
29.
Y.
Meng
,
Y.
Wang
,
S.
Sun
,
S.
Wang
, and
H.
Zhang
, “
Multi-objective optimal dispatching of demand response-enabled microgrid considering uncertainty of renewable energy generations based on two-level iterative strategy
,”
Energy Rep.
9
,
1842
1858
(
2023
).
30.
X.
Lu
et al, “
Hierarchical distributed control approach for multiple on-site DERs coordinated operation in microgrid
,”
Int. J. Electr. Power Energy Syst.
129
,
106864
(
2021
).
31.
L.
Che
,
M.
Shahidehpour
,
A.
Alabdulwahab
, and
Y.
Al-Turki
, “
Hierarchical coordination of a community microgrid with AC and DC microgrids
,”
IEEE Trans. Smart Grid
6
(
6
),
3042
3051
(
2015
).
32.
L.
Ye
,
Y.
Jin
,
K.
Wang
,
W.
Chen
,
F.
Wang
, and
B.
Dai
, “
A multi-area intra-day dispatch strategy for power systems under high share of renewable energy with power support capacity assessment
,”
Appl. Energy
351
,
121866
(
2023
).
33.
K.
Yang
et al, “
Energy dispatch optimization of islanded multi-microgrids based on symbiotic organisms search and improved multi-agent consensus algorithm
,”
Energy
239
,
122105
(
2022
).
34.
Y.
Ma
,
W.
Xu
,
H.
Yang
, and
D.
Zhang
, “
Two-stage stochastic robust optimization model of microgrid day-ahead dispatching considering controllable air conditioning load
,”
Int. J. Electr. Power Energy Syst.
141
,
108174
(
2022
).
35.
Z.
Aidong
,
X.
Qingshan
,
W.
Kai
,
J.
Ling
, and
W.
Xudong
, “
a day-ahead optimal economic dispatch schedule for multi energy interconnected region
,”
Energy Procedia
100
,
396
400
(
2016
).
36.
R. H. M.
Zargar
and
M. H.
Yaghmaee
, “
Energy exchange cooperative model in SDN-based interconnected multi-microgrids
,”
Sustainable Energy, Grids Networks
27
,
100491
(
2021
).
37.
Q.
Wu
,
Z.
Xie
,
H.
Ren
,
Q.
Li
, and
Y.
Yang
, “
Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study
,”
Energy
254
,
124448
(
2022
).
38.
H.
Karimi
and
S.
Jadid
, “
Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework
,”
Energy
195
,
116992
(
2020
).
39.
H.
Karimi
and
S.
Jadid
, “
Modeling of transactive energy in multi-microgrid systems by hybrid of competitive-cooperative games
,”
Electr. Power Syst. Res.
201
,
107546
(
2021
).
40.
B.
Li
,
H.
Wang
,
X.
Wang
,
M.
Negnevitsky
, and
C.
Li
, “
Tri-stage optimal scheduling for an islanded microgrid based on a quantum adaptive sparrow search algorithm
,”
Energy Convers. Manage.
261
,
115639
(
2022
).
41.
K.-H.
Pho
, “
Improvements of the Newton–Raphson method
,”
J. Comput. Appl. Math.
408
,
114106
(
2022
).
42.
W.
Chen
,
J.
Wang
,
G.
Yu
,
J.
Chen
, and
Y.
Hu
, “
Research on day-ahead transactions between multi-microgrid based on cooperative game model
,”
Appl. Energy
316
,
119106
(
2022
).
43.
Y.
Xu
,
S.
Ye
,
Z.
Qin
,
X.
Lin
,
J.
Huangfu
, and
W.
Zhou
, “
A coordinated optimal scheduling model with Nash bargaining for shared energy storage and multi-microgrids based on two-layer ADMM
,”
Sustainable Energy Technol. Assess.
56
,
102996
(
2023
).
You do not currently have access to this content.