Multi-turbine wind power (WP) prediction contributes to wind turbine (WT) management and refined wind farm operations. However, the intricate and dynamic nature of the interrelationships among WTs hinders the full exploration of their potential in improving prediction. This paper proposes a novel spatio-positional series attention long short-term memory (SPSA-LSTM) method, which extracts the hidden correlations and temporal features from wind speed (WS) and WP historical data of different WTs for high-precision short-term prediction. Using embedding techniques, we incorporate crucial spatial location information of WTs into time series, enhancing the model's representative capability. Furthermore, we employ a self-attention mechanism with strong relational modeling capability to extract the correlation features among time series. This approach possesses remarkable learning abilities, enabling the thorough exploration of the complex interdependencies within inputs. Consequently, each WT is endowed with a comprehensive dataset comprising attention scores from all other WTs and its own WS and WP. The LSTM fuses these features and extracts temporal patterns, ultimately generating the WP prediction outputs. Experiments conducted on 20 WTs demonstrate that our method significantly surpasses other baselines. Ablation experiments provide further evidence to support the effectiveness of the approach in leveraging spatial embedding to optimize prediction performance.

1.
C.
Gilbert
,
J.
Browell
, and
D.
McMillan
, “
Leveraging turbine-level data for improved probabilistic wind power forecasting
,”
IEEE Trans. Sustainable Energy
11
,
1152
1160
(
2020
).
2.
K.
Yunus
,
T.
Thiringer
, and
P.
Chen
, “
Arima-based frequency-decomposed modeling of wind speed time series
,”
IEEE Trans. Power Syst.
31
,
2546
2556
(
2016
).
3.
A.
Kavousi-Fard
,
H.
Samet
, and
F.
Marzbani
, “
A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
,”
Expert Syst. Appl.
41
,
6047
6056
(
2014
).
4.
J. H.
Friedman
, “
Greedy function approximation: A gradient boosting machine
,”
Ann. Stat.
29
,
1189
1232
(
2001
).
5.
T.
Chen
and
C.
Guestrin
, “
Xgboost: A scalable tree boosting system
,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
2016
).
6.
Y.
Wang
,
R.
Zou
,
F.
Liu
,
L.
Zhang
, and
Q.
Liu
, “
A review of wind speed and wind power forecasting with deep neural networks
,”
Appl. Energy
304
,
117766
(
2021
).
7.
W.
Zaremba
,
I.
Sutskever
, and
O.
Vinyals
, “
Recurrent neural network regularization
,” (
2014
).
8.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
9.
K.
Cho
,
B. V.
Merrienboer
,
C.
Gulcehre
,
D.
Bahdanau
,
F.
Bougares
,
H.
Schwenk
, and
Y.
Bengio
,
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
(
Association for Computational Linguistics
,
2014
).
10.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
, “
Imagenet classification with deep convolutional neural networks
,”
Commun. ACM
60
,
84
90
(
2012
).
11.
H.
Liu
,
L.
Yang
,
B.
Zhang
, and
Z.
Zhang
, “
A two-channel deep network based model for improving ultra-short-term prediction of wind power via utilizing multi-source data
,”
Energy
283
,
128510
(
2023
).
12.
U.
Michelucci
, “
An introduction to autoencoders
,” [cs.LG] (
2022
).
13.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
,
J.
Uszkoreit
,
L.
Jones
,
A. N.
Gomez
,
L.
Kaiser
, and
I.
Polosukhin
, “
Attention is all you need
,” arXiv:1706.03762 (
2017
).
14.
Y. A.
Mao
,
A.
Cs
, and
B.
Hl
, “
Day-ahead wind power forecasting based on the clustering of equivalent power curves
,”
Energy
218
,
119515
(
2020
).
15.
Z.
Zheng
and
Z.
Zhang
, “
A stochastic recurrent encoder decoder network for multistep probabilistic wind power predictions
,”
IEEE Trans. Neural Networks Learn. Syst.
2023
,
1
14.
16.
X.
Niu
and
J.
Wang
, “
A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
,”
Appl. Energy
241
,
519
539
(
2019
).
17.
Q.
Hu
,
R.
Zhang
, and
Y.
Zhou
, “
Transfer learning for short-term wind speed prediction with deep neural networks
,”
Renewable Energy
85
,
83
95
(
2016
).
18.
S.
Wang
,
J.
Cao
, and
P.
Yu
, “
Deep learning for spatio-temporal data mining: A survey
,”
IEEE Trans. Knowl. Data Eng.
34
,
3681
(
2020
).
19.
H.
Liu
and
Z.
Zhang
, “
A bi-party engaged modeling framework for renewable power predictions with privacy-preserving
,”
IEEE Trans. Power Syst.
38
,
5794
5805
(
2023
).
20.
X.
Shi
,
Z.
Chen
,
H.
Wang
,
D. Y.
Yeung
,
W. K.
Wong
, and
W. C.
Woo
,
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
(
MIT Press
,
2015
).
21.
H.
Wilms
,
M.
Cupelli
,
A.
Monti
, and
T.
Gross
, “
Exploiting spatio-temporal dependencies for RNN-based wind power forecasts
,” in
IEEE PES GTD Grand International Conference and Exposition Asia
(
2019
).
22.
Z.
Sun
and
M.
Zhao
, “
Short-term wind power forecasting based on VMD decomposition, ConvLSTM networks and error analysis
,”
IEEE Access
8
,
134422
134434
(
2020
).
23.
L.
Yang
and
Z.
Zhang
, “
A deep attention convolutional recurrent network assisted by k-shape clustering and enhanced memory for short term wind speed predictions
,”
IEEE Trans. Sustainable Energy
13
,
856
(
2022
).
24.
Y.
Liu
,
C.
Gong
,
L.
Yang
, and
Y.
Chen
, “
DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction
,”
Expert Syst. Appl.
143
,
113082
(
2020
).
25.
R.
Chao
,
A.
Ning
,
J.
Wang
,
L.
Lian
,
B.
Hu
, and
D.
Shang
, “
Optimal parameters selection for bp neural network based on particle swarm optimization: A case study of wind speed forecasting
,”
Knowl.-Based Syst.
56
,
226
239
(
2014
).
26.
J.
Szoplik
, “
Forecasting of natural gas consumption with artificial neural networks
,”
Energy
85
,
208
220
(
2015
).
27.
Z.
Lin
and
X.
Liu
, “
Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network
,”
Energy
201
,
117693
(
2020
).
28.
Y.-X.
Wu
,
Q.-B.
Wu
, and
J.-Q.
Zhu
, “
Data-driven wind speed forecasting using deep feature extraction and LSTM
,”
IET Renewable Power Gener.
13
,
2062
2069
(
2019
).
29.
R.
Yu
,
J.
Gao
,
M.
Yu
,
W.
Lu
,
T.
Xu
,
M.
Zhao
,
J.
Zhang
,
R.
Zhang
, and
Z.
Zhang
, “
LSTM-EFG for wind power forecasting based on sequential correlation features
,”
Future Gener. Comput. Syst.
93
,
33
42
(
2019
).
30.
Y.
Zhang
,
Y.
Li
, and
G.
Zhang
, “
Short-term wind power forecasting approach based on Seq2Seq model using NWP data
,”
Energy
213
,
118371
(
2020
).
31.
Q.
Wen
,
T.
Zhou
,
C.
Zhang
,
W.
Chen
,
Z.
Ma
,
J.
Yan
, and
L.
Sun
, “
Transformers in time series: A survey
,” arXiv:2202.07125 (
2022
).
32.
S.
Li
,
X.
Jin
,
Y.
Xuan
,
X.
Zhou
,
W.
Chen
,
Y. X.
Wang
, and
X.
Yan
, “
Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting
,” in
NIPS'19: Proceedings of the 33rd International Conference on Neural Information Processing System
(
2019
).
33.
H.
Zhou
,
S.
Zhang
,
J.
Peng
,
S.
Zhang
, and
W.
Zhang
, “
Informer: Beyond efficient transformer for long sequence time-series forecasting
,” arXiv:2012.07436 (
2020
).
34.
H.
Wu
,
J.
Xu
,
J.
Wang
, and
M.
Long
, “
Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting
,” arXiv:2106.13008 (
2021
).
35.
T.
Zhou
,
Z.
Ma
,
Q.
Wen
,
X.
Wang
,
L.
Sun
, and
R.
Jin
, “
FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting
,” (
2022
).
36.
B.
Lim
,
S.
Ark
,
N.
Loeff
, and
T.
Pfister
, “
Temporal fusion transformers for interpretable multi-horizon time series forecasting
,”
Int. J. Forecast.
37
,
1748
(
2021
).
37.
A.
Zeng
,
M.
Chen
,
L.
Zhang
, and
Q.
Xu
, “
Are transformers effective for time series forecasting?
,” in
Proceedings of the AAAI Conference on Artificial Intelligence
(
2023
).
38.
S.
Merity
, “
Single headed attention RNN: Stop thinking with your head
,” arXiv:1911.11423 (
2019
).
39.
Q.
Tan
,
M.
Ye
,
A. J.
Ma
,
B.
Yang
, and
P. C.
Yuen
, “
Explainable uncertainty-aware convolutional recurrent neural network for irregular medical time series
,”
IEEE Trans. Neural Networks Learn. Syst.
32
,
4665
(
2020
).
40.
Y.
Qin
,
K.
Li
,
Z.
Liang
,
B.
Lee
,
F.
Zhang
,
Y.
Gu
,
L.
Zhang
,
F.
Wu
, and
D.
Rodriguez
, “
Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal
,”
Appl. Energy
236
,
262
272
(
2019
).
41.
K.
Chen
,
G.
Chen
,
D.
Xu
,
L.
Zhang
, and
A.
Knoll
, “
NAST: Non-autoregressive spatial-temporal transformer for time series forecasting
,” arXiv:2102.05624 (
2021
).
42.
H.
Zang
,
L.
Liu
,
L.
Sun
,
L.
Cheng
, and
G.
Sun
, “
Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations
,”
Renewable Energy
160
,
26
(
2020
).
43.
A.
Kisvari
,
Z.
Lin
, and
X.
Liu
, “
Wind power forecasting: A data-driven method along with gated recurrent neural network
,”
Renewable Energy
163
,
1895
1909
(
2021
).
44.
T.
Hong
,
P.
Pinson
,
Y.
Wang
,
R.
Weron
,
D.
Yang
, and
H.
Zareipour
, “
Energy forecasting: A review and outlook
,” in
Working Papers in Management Science (WORMS)
(
2020
).
45.
H.
You
,
R.
Jia
,
X.
Chen
, and
L.
Huang
, “
A design of ultra-short-term power prediction algorithm driven by wind turbine operation and maintenance data for LSTM-SA neural network
,”
J. Renewable Sustainable Energy
15
,
043307
(
2023
).
46.
Y.
Ding
,
Data Science For Wind Energy
(
CRC Press
,
2019
).
47.
S.
Akbar
and
M.
Khan
, “
Critical analysis of density-based spatial clustering of applications with noise (dbscan) techniques
,”
Int. J. Database Theoru Applic.
7
,
17
28
(
2014
).
48.
X.
Mi
,
H.
Lui
, and
Y.
Li
, “
Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine
,”
Energy Convers. Manage.
180
,
196
205
(
2019
).
You do not currently have access to this content.