The highly porous and binder-free flexible paper electrodes can enhance the specific capacitance of symmetric supercapacitors (SCs) due to their large surface and effective ion diffusion pathways. We synthesized the exfoliated graphite (ExG) by the thermal exfoliation method of chemically treated graphite flakes and compressed it into a paper-like thin sheet (binder-free) of ∼0.15 mm thickness. The coin cell SCs with copper (Cu) and stainless steel (SS) as current collectors have been fabricated for the electrochemical measurement. The cyclic voltammetry and galvanostatic charge/discharge measurements are investigated at various scan rates and current densities. The SCs with Cu foil as a current collector perform better than SS-based SCs. The Cu current collector-based SCs showed a specific capacitance of 37.08 mF cm−2, whereas it was ∼29.98 mF cm−2 for SS-based SCs at a 0.01 V s−1 scan rate across a 0–0.6 V potential window. Approximately no degradation in charge storage capacity for more than 15 000 cycles at 0.1 V s−1 shows the ultra-stability of the flexible ExG-based binder-free electrodes. A digital watch is powered using the fabricated pouch cell supercapacitor with copper-based current collectors to show the potential of SCs.

1.
W.
Zuo
,
R.
Li
,
C.
Zhou
,
Y.
Li
,
J.
Xia
, and
J.
Liu
, “
Battery-supercapacitor hybrid devices: Recent progress and future prospects
,”
Adv. Sci.
4
,
1600539
(
2017
).
2.
A.
Burke
, “
Ultracapacitors: Why, how, and where is the technology
,”
J. Power Sources
91
,
37
50
(
2000
).
3.
J.
Li
,
Y.
Chen
, and
Y.
Liu
, “
Research on a stand-alone photovoltaic system with a supercapacitor as the energy storage device
,”
Energy Procedia
16
,
1693
1700
(
2012
).
4.
J. K.
Yadav
,
B.
Rani
, and
A.
Dixit
, “
2D graphitic carbon nitride as the efficient cathode material for the non-aqueous rechargeable iron-ion battery under an ambient environment
,”
J. Power Sources
567
,
232943
(
2023
).
5.
J. K.
Yadav
,
B.
Rani
, and
A.
Dixit
, “
Capacity degradation analysis of the rechargeable iron ion batteries using post-mortem analysis and the impedance spectroscopy
,”
Ionics
29
,
1497
1506
(
2023
).
6.
M.
Vangari
,
T.
Pryor
, and
L.
Jiang
, “
Supercapacitors: Review of materials and fabrication methods
,”
J. Energy Eng.
139
,
72
79
(
2013
).
7.
Z. S.
Iro
,
C.
Subramani
, and
S. S.
Dash
, “
A brief review on electrode materials for supercapacitor
,”
Int. J. Electrochem. Sci.
11
,
10628
10643
(
2016
).
8.
K. K.
Patel
,
T.
Singhal
,
V.
Pandey
,
T. P.
Sumangala
, and
M. S.
Sreekanth
, “
Evolution and recent developments of high-performance electrode material for supercapacitors: A review
,”
J. Energy Storage
44
,
103366
(
2021
).
9.
P.
Sivaprakash
,
K. A.
Kumar
,
S.
Muthukumaran
,
A.
Pandurangan
,
A.
Dixit
, and
S.
Arumugam
, “
NiF2 as an efficient electrode material with high window potential of 1.8 V for high energy and power density asymmetric supercapacitor
,”
J. Electroanal. Chem.
873
,
114379
(
2020
).
10.
Y.
Dahiya
,
M.
Hariram
,
M.
Kumar
,
A.
Jain
, and
D.
Sarkar
, “
Modified transition metal chalcogenides for high-performance supercapacitors: Current trends and emerging opportunities
,”
Coord. Chem. Rev.
451
,
214265
(
2022
).
11.
B. E.
Conway
and
W. G.
Pell
, “
Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices
,”
J. Solid State Electrochem.
7
,
637
644
(
2003
).
12.
I. V.
Grigorieva
,
A. A.
Firsov
,
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
, and
S. V.
Dubonos
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
13.
Z.
Li
,
K.
Xu
, and
Y.
Pan
, “
Recent development of supercapacitor electrode based on carbon materials
,”
Nanotechnol. Rev.
8
,
35
49
(
2019
).
14.
C. F.
Liu
,
Y. C.
Liu
,
T. Y.
Yi
, and
C. C.
Hu
, “
Carbon materials for high-voltage supercapacitors
,”
Carbon
145
,
529
548
(
2019
).
15.
M.
Horn
,
B.
Gupta
,
J.
MacLeod
,
J.
Liu
, and
N.
Motta
, “
Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials
,”
Curr. Opin. Green Sustainable Chem.
17
,
42
48
(
2019
).
16.
Y. B.
Tan
and
J. M.
Lee
, “
Graphene for supercapacitor applications
,”
J. Mater. Chem. A
1
,
14814
14843
(
2013
).
17.
R.
Dubey
and
V.
Guruviah
, “
Review of carbon-based electrode materials for supercapacitor energy storage
,”
Ionics
25
,
1419
1445
(
2019
).
18.
Y.
Wang
,
Z.
Shi
,
Y.
Huang
,
Y.
Ma
,
C.
Wang
,
M.
Chen
, and
Y.
Chen
, “
Supercapacitor devices based on graphene materials
,”
J. Phys. Chem. C
113
(
30
),
13103
13107
(
2009
).
19.
E.
Raymundo-Piñero
,
V.
Khomenko
,
E.
Frackowiak
, and
F.
Béguin
, “
Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors
,”
J. Electrochem. Soc.
152
,
A229
(
2005
).
20.
M. D.
Stoller
and
R. S.
Ruoff
, “
Best practice methods for determining an electrode material's performance for ultracapacitors
,”
Energy Environ. Sci.
3
,
1294
1301
(
2010
).
21.
G.
Wang
,
X.
Sun
,
F.
Lu
,
H.
Sun
,
M.
Yu
,
W.
Jiang
,
C.
Liu
, and
J.
Lian
, “
Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors
,”
Small
8
,
452
459
(
2012
).
22.
L.
Zhang
and
X. S.
Zhao
, “
Carbon-based materials as supercapacitor electrodes
,”
Chem. Soc. Rev.
38
,
2520
2531
(
2009
).
23.
A.
Balducci
,
R.
Dugas
,
P. L.
Taberna
,
P.
Simon
,
D.
Plée
,
M.
Mastragostino
, and
S.
Passerini
, “
High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte
,”
J. Power Sources
165
,
922
927
(
2007
).
24.
S.
Zheng
,
Z. S.
Wu
,
S.
Wang
,
H.
Xiao
,
F.
Zhou
,
C.
Sun
,
X.
Bao
, and
H. M.
Cheng
, “
Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors
,”
Energy Storage Mater.
6
,
70
97
(
2017
).
25.
D. P.
Chatterjee
and
A. K.
Nandi
, “
A review on the recent advances in hybrid supercapacitors
,”
J. Mater. Chem. A
9
,
15880
15918
(
2021
).
26.
K.
Shu
,
Y.
Chao
,
S.
Chou
,
C.
Wang
,
T.
Zheng
,
S.
Gambhir
, and
G. G.
Wallace
, “
A “tandem” strategy to fabricate flexible graphene/polypyrrole nanofiber film using the surfactant-exfoliated graphene for supercapacitors
,”
ACS Appl. Mater. Interfaces
10
,
22031
22041
(
2018
).
27.
L.
Huang
,
W.
Rao
,
L.
Fan
,
J.
Xu
,
Z.
Bai
,
W.
Xu
, and
H.
Bao
, “
Paper electrodes coated with partially-exfoliated graphite and polypyrrole for high-performance flexible supercapacitors
,”
Polymers
10
,
135
(
2018
).
28.
Y.
Song
,
X.
Cai
,
X.
Xu
, and
X. X.
Liu
, “
Integration of nickel-cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability
,”
J. Mater. Chem. A
3
,
14712
14720
(
2015
).
29.
J.
Lin
,
C.
Zhang
,
Z.
Yan
,
Y.
Zhu
,
Z.
Peng
,
R. H.
Hauge
,
D.
Natelson
, and
J. M.
Tour
, “
3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance
,”
Nano Lett.
13
,
72
78
(
2013
).
30.
M. F.
El-Kady
,
V.
Strong
,
S.
Dubin
, and
R. B.
Kaner
, “
Laser scribing of high-performance and flexible graphene-based electrochemical capacitors
,”
Science
335
,
1326
1330
(
2012
).
31.
M.
Beidaghi
and
C.
Wang
, “
Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance
,”
Adv. Funct. Mater.
22
,
4501
4510
(
2012
).
32.
M. A.
Bissett
,
I. A.
Kinloch
, and
R. A. W.
Dryfe
, “
Characterization of MoS2-graphene composites for high-performance coin cell supercapacitors
,”
ACS Appl. Mater. Interfaces
7
,
17388
17398
(
2015
).
33.
R.
Kumar
,
R.
Jakhoria
, and
A.
Dixit
, “
Thermal conductivity enhancement myristic acid using exfoliated graphite for thermal energy storage applications
,” in
Concentrated Solar Thermal Energy Technologies
(
Springer
,
2018
), pp.
159
167
.
34.
C.
Tiwari
,
S. S.
Jha
,
R.
Kumar
,
M.
Chhabra
,
B. D.
Malhotra
, and
A.
Dixit
, “
Exfoliated graphite carbon paper-based flexible nonenzymatic glucose sensor
,”
Mater. Sci. Eng., B
285
,
115931
(
2022
).
35.
D. B.
Schuepfer
,
F.
Badaczewski
,
J. M.
Guerra-Castro
,
D. M.
Hofmann
,
C.
Heiliger
,
B.
Smarsly
, and
P. J.
Klar
, “
Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy
,”
Carbon
161
,
359
372
(
2020
).
36.
S.
Reich
and
C.
Thomsen
, “
Raman spectroscopy of graphite
,”
Philos. Trans. R. Soc., A
362
,
2271
2288
(
2004
).
37.
M. A.
Pimenta
,
G.
Dresselhaus
,
M. S.
Dresselhaus
,
L. G.
Cançado
,
A.
Jorio
, and
R.
Saito
, “
Studying disorder in graphite-based systems by Raman spectroscopy
,”
Phys. Chem. Chem. Phys.
9
,
1276
1291
(
2007
).
38.
G.
George
,
S. B.
Sisupal
,
T.
Tomy
,
A.
Kumaran
,
P.
Vadivelu
,
V.
Suvekbala
,
S.
Sivaram
, and
L.
Ragupathy
, “
Facile, environmentally benign and scalable approach to produce pristine few layers graphene suitable for preparing biocompatible polymer nanocomposites
,”
Sci. Rep.
8
,
11228
(
2018
).
39.
T.
Nakamura
,
K.
Homma
, and
K.
Tachibana
, “
Impedance spectroscopy of manganite films prepared by metalorganic chemical vapor deposition
,”
J. Nanosci. Nanotechnol.
11
,
8408
8411
(
2011
).
40.
Z.
Deng
,
Z.
Zhang
,
Y.
Lai
,
J.
Liu
,
J.
Li
, and
Y.
Liu
, “
Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading
,”
J. Electrochem. Soc.
160
,
A553
A558
(
2013
).
41.
R.
Aswathy
,
M.
Ulaganathan
, and
P.
Ragupathy
, “
Mn3O4 nanoparticles grown on surface activated graphite paper for aqueous asymmetric supercapacitors
,”
J. Alloys Compd.
767
,
141
150
(
2018
).
42.
H.
Sun
,
L.
Cao
, and
L.
Lu
, “
Bacteria promoted hierarchical carbon materials for high-performance supercapacitor
,”
Energy Environ. Sci.
5
,
6206
6213
(
2012
).
43.
G.
Bhattacharya
,
G.
Kandasamy
,
N.
Soin
,
R. K.
Upadhyay
,
S.
Deshmukh
,
D.
Maity
,
J.
McLaughlin
, and
S. S.
Roy
, “
Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical supercapacitors
,”
RSC Adv.
7
,
327
335
(
2017
).
44.
S.
Ghosh
,
G.
Sahoo
,
S. R.
Polaki
,
N. G.
Krishna
,
M.
Kamruddin
, and
T.
Mathews
, “
Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte
,”
J. Appl. Phys.
122
,
214902
(
2017
).
45.
Y.
Ai
,
J.
Ma
, and
Z. M.
Wang
, “
A high performance symmetrical supercapacitor based on NiCo2O4 nanowires on thin film carbon layer
,”
IOP Conf. Ser.: Earth Environ. Sci.
170
,
032095
(
2018
).
46.
J. P.
Alper
,
M.
Vincent
,
C.
Carraro
, and
R.
Maboudian
, “
Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor
,”
Appl. Phys. Lett.
100
,
163901
(
2012
).
47.
S.
Dutta
and
S.
De
, “
MoS2 nanosheet/rGO hybrid: An electrode material for high performance thin film supercapacitor
,”
Mater. Today: Proc.
5
,
9771
9775
(
2018
).
48.
H. W.
Chang
,
C. L.
Dong
,
Y. H.
Chen
,
Y. Z.
Xu
,
T. C.
Huang
,
S. C.
Chen
,
F. J.
Liu
,
Y. H.
Lai
, and
Y. C.
Tsai
, “
Extended graphite supported flower-like MnO2 as bifunctional materials for supercapacitors and glucose sensing
,”
Nanomaterials
11
,
2881
(
2021
).
49.
A.
Achour
,
A.
Guerra
,
F.
Moulaï
,
M.
Islam
,
T.
Hadjersi
,
I.
Ahmad
,
S.
Parvez
,
R.
Boukherroub
, and
J. J.
Pireaux
, “
MnOx thin film based electrodes: Role of surface point defects and structure towards extreme enhancement in specific capacitance
,”
Mater. Chem. Phys.
242
,
122487
(
2020
).
50.
J.
Zhang
,
Y.
Wang
,
J.
Wu
,
X.
Shu
,
C.
Yu
,
J.
Cui
,
Y.
Qin
,
Y.
Zhang
,
P. M.
Ajayan
, and
Y.
Wu
, “
Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies
,”
Chem. Eng. J.
313
,
1071
1081
(
2017
).
51.
Y.
Liu
,
H.
Jiang
,
J.
Hao
,
Y.
Liu
,
H.
Shen
,
W.
Li
, and
J.
Li
, “
Metal-organic framework-derived reduced graphene oxide-supported ZnO/ZnCo2O4/C hollow nanocages as cathode catalysts for aluminum-O2 batteries
,”
ACS Appl. Mater. Interfaces
9
,
31841
31852
(
2017
).
You do not currently have access to this content.