When the temperature of solar photovoltaic (PV) modules rises, efficiency drops and module degradation accelerates. Thus, it is beneficial to reduce module operating temperatures. Previous studies of solar power plants have illustrated that incoming flow characteristics, turbulent mixing, and array geometry can strongly impact convective cooling, as measured by the convective heat transfer coefficient h. In the fields of heat transfer and plant canopy flow, previous work has shown that system-scale arrangement modifications—e.g., variable spacing, barriers, or windbreaks—can passively alter the flow, enhance turbulent mixing, and influence convection. However, researchers have not yet explored how variable spacing or barriers might enhance convective cooling in solar power plants. Here, high-resolution large-eddy simulations model the air flow and heat transfer through solar power plant arrangements modified with missing modules and barrier walls. We then perform a control volume analysis to evaluate the net heat flux and compute h, which quantifies the influence of these spatial modifications on convective cooling and, thus, module temperature and power output. Installing barrier walls yields the greatest improvements, increasing h by 3.4%, reducing module temperature by an estimated 2.5 °C, and boosting power output by an estimated 1.4% on average. These findings indicate that incorporating variable spacing or barrier-type elements into PV plant designs can reduce module temperature and, thus, improve PV performance and service life.

1.
O.
Dupré
,
R.
Vaillon
, and
M. A.
Green
,
Thermal Behavior of Photovoltaic Devices: Physics and Engineering
(
Springer
,
2017
).
2.
R.
Vaillon
,
O.
Dupré
,
R. B.
Cal
, and
M.
Calaf
, “
Pathways for mitigating thermal losses in solar photovoltaics
,”
Sci. Rep.
8
,
13163
(
2018
).
3.
B.
Stanislawski
,
F.
Margairaz
,
R. B.
Cal
, and
M.
Calaf
, “
Potential of module arrangements to enhance convective cooling in solar photovoltaic arrays
,”
Renewable Energy
157
,
851
858
(
2020
).
4.
A.
Glick
,
N.
Ali
,
J.
Bossuyt
,
M.
Calaf
, and
R. B.
Cal
, “
Utility-scale solar PV performance enhancements through system-level modifications
,”
Sci. Rep.
10
,
10505
(
2020
).
5.
A.
Glick
,
N.
Ali
,
J.
Bossuyt
,
G.
Recktenwald
,
M.
Calaf
, and
R. B.
Cal
, “
Infinite photovoltaic solar arrays: Considering flux of momentum and heat transfer
,”
Renewable Energy
156
,
791
803
(
2020
).
6.
A.
Glick
,
S. E.
Smith
,
N.
Ali
,
J.
Bossuyt
,
G.
Recktenwald
,
M.
Calaf
, and
R. B.
Cal
, “
Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms
,”
Sol. Energy
207
,
173
182
(
2020
).
7.
B. J.
Stanislawski
,
T.
Harman
,
T. J.
Silverman
,
R. B.
Cal
, and
M.
Calaf
, “
Row spacing as a controller of solar module temperature and power output in solar farms
,”
J. Renewable Sustainable Energy
14
,
063702
(
2022
).
8.
E. M.
Sparrow
,
J. E.
Niethammer
, and
A.
Chaboki
, “
Heat transfer and pressure drop characteristics of arrays of rectangular modules encountered in electronic equipment
,”
Int. J. Heat Mass Transfer
25
,
961
973
(
1982
).
9.
B. N.
Bailey
,
R.
Stoll
,
E. R.
Pardyjak
, and
W. F.
Mahaffee
, “
Effect of vegetative canopy architecture on vertical transport of massless particles
,”
Atmos. Environ.
95
,
480
489
(
2014
).
10.
M. J.
Judd
,
M. R.
Raupach
, and
J. J.
Finnigan
, “
A wind tunnel study of turbulent flow around single and multiple windbreaks, part I: Velocity fields
,”
Boundary-Layer Meteorol.
80
,
127
165
(
1996
).
11.
E. G.
Patton
,
R. H.
Shaw
,
M. J.
Judd
, and
M. R.
Raupach
, “
Large-eddy simulation of windbreak flow
,”
Boundary-Layer Meteorol.
87
,
275
307
(
1998
).
12.
B.
Eng
, “
Improving convective cooling estimates of photovoltaic modules using atmospheric measurements
,” Ph.D. thesis (
University of Utah
,
2019
).
13.
S. E.
Smith
,
B. J.
Stanislawski
,
B. K.
Eng
,
N.
Ali
,
T. J.
Silverman
,
M.
Calaf
, and
R. B.
Cal
, “
Viewing convection as a solar farm phenomenon broadens modern power predictions for solar photovoltaics
,”
J. Renewable Sustainable Energy
14
,
063502
(
2022
).
14.
T. C.
Henderson
,
P. A.
McMurtry
,
P. J.
Smith
,
G. A.
Voth
,
C. A.
Wight
, and
D. W.
Pershing
, “
Simulating accidental fires and explosions
,”
Comput. Sci. Eng.
2
,
64
76
(
2000
).
15.
A. N.
Hayati
,
R.
Stoll
,
J. J.
Kim
,
T.
Harman
,
M. A.
Nelson
,
M. J.
Brown
, and
E. R.
Pardyjak
, “
Comprehensive evaluation of fast-response, Reynolds-averaged Navier–Stokes, and large-eddy simulation methods against high-spatial-resolution wind-tunnel data in step-down street canyons
,”
Boundary-Layer Meteorol.
164
,
217
247
(
2017
).
16.
B.
Kashiwa
and
E.
Gaffney
, “
Design basis for CFDLIB
,”
Technical Report No. LA-UR-03–1295
(
Los Alamos National Laboratory
,
Los Alamos
,
2003
).
17.
B.
Kashiwa
, “
A multifield model and method for fluid-structure interaction dynamics
,”
Technical Report No. LA-UR-01–1136
(
Los Alamos National Laboratory
,
Los Alamos
,
2001
).
18.
B.
Kashiwa
,
M.
Lewis
, and
T.
Wilson
, “
Fluid-structure interaction modeling
,”
Technical Report No. LA-13111-PR
(
Los Alamos National Laboratory
,
Los Alamos
,
1996
).
19.
B.
Kashiwa
and
R.
Rauenzahn
, “
A cell-centered ICE method for multiphase flow simulations
,”
Technical Report No. LA-UR-93–3922
(
Los Alamos National Laboratory
,
Los Alamos
,
1994
).
20.
D.
Sulsky
,
S.
Zhou
, and
H.
Schreyer
, “
Application of a particle-in-cell method to solid mechanics
,”
Comput. Phys. Commun.
87
,
236
252
(
1995
).
21.
T. B.
Harman
,
J. E.
Guilkey
,
B. A.
Kashiwa
,
J.
Schmidt
, and
P. A.
McMurtry
, “
An Eulerian–Lagrangian approach for large deformation fluid-structure interaction problems, part 2: Multi-physics simulations within a modern computational framework
,” in
Fluid Structure Interactions II
(
WIT Press
,
Cadiz, Spain
,
2003
).
22.
J. E.
Guilkey
,
T. B.
Harman
, and
B.
Banerjee
, “
An Eulerian–Lagrangian approach for simulating explosions of energetic devices
,”
Comput. Struct.
85
,
660
674
(
2007
).
23.
J. E.
Guilkey
,
T. B.
Harman
,
B. A.
Kashiwa
,
J.
Schmidt
, and
P. A.
McMurtry
, “
An Eulerian–Lagrangian approach for large deformation fluid–structure interaction problems, part 1: Algorithm development
,” in
Fluid Structure Interactions II
(
WIT Press
,
Cadiz, Spain
,
2003
).
24.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Springer
,
Dordrecht, Netherlands
,
1988
).
25.
J. C.
Sutherland
and
C. A.
Kennedy
, “
Improved boundary conditions for viscous, reacting, compressible flows
,”
J. Comput. Phys.
191
,
502
524
(
2003
).
26.
T.
Morrison
,
E. R.
Pardyjak
,
M.
Mauder
, and
M.
Calaf
, “
The heat-flux imbalance: The role of advection and dispersive fluxes on heat transport over thermally heterogeneous terrain
,”
Boundary-Layer Meteorol.
183
,
227
(
2022
).
27.
W. C.
Swinbank
, “
The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere
,”
J. Meteorol.
8
,
135
145
(
1951
).
28.
S. S.
Lu
and
W. W.
Willmarth
, “
Measurements of the structure of the Reynolds stress in a turbulent boundary layer
,”
J. Fluid Mech.
60
,
481
511
(
1973
).
29.
V. B. L.
Boppana
,
Z.-T.
Xie
, and
I. P.
Castro
, “
Large-eddy simulation of heat transfer from a single cube mounted on a very rough wall
,”
Boundary-Layer Meteorol.
147
,
347
368
(
2013
).
30.
A.
Sharma
and
R.
García-Mayoral
, “
Turbulent flows over dense filament canopies
,”
J. Fluid Mech.
888
,
A2
(
2020
).
31.
See https://youtu.be/QcGakbWTriA for an animation of the instantaneous temperature fields of the three PV plant arrangements.
32.
E. H.
Adeh
,
S. P.
Good
,
M.
Calaf
, and
C. W.
Higgins
, “
Solar PV power potential is greatest over croplands
,”
Sci. Rep.
9
,
11442
(
2019
).
33.
Solar Energy Technologies Office (SET0)
,
Solar Energy Technologies Office Updated 2030 Goals for Utility-Scale Photovoltaics
(
U.S. Department of Energy
,
2021
).
34.
D.
Stanzione
,
J.
West
,
R. T.
Evans
,
T.
Minyard
,
O.
Ghattas
, and
D. K.
Panda
, “
Frontera: The evolution of leadership computing at the national science foundation
,” in
Practice and Experience in Advanced Research Computing, PEARC '20
(
Association for Computing Machinery
,
New York
,
2020
), pp.
106
111
.
35.
S. M.
Alshareef
, “
Numerical investigation on novel microscale convective heat transfer enhancement methods
,” Ph.D. thesis (
University of Utah
,
2023
).
36.
S.
Alshareef
,
T.
Harman
, and
T.
Ameel
, “
Fluid dynamic and thermal performance of a slotted cylinder at low Reynolds number
,”
Int. J. Heat Mass Transfer
212
,
124268
(
2023
).
You do not currently have access to this content.