Aerodynamic performance of wind turbine governs the overall energy efficiency, which has been an ever-lasting research focus in the field of wind power technology. Due to the coupling effect among the highly complex environmental and structural uncertainties, the practical aerodynamic performance may not be reliably predicted. To aggravate, this performance declines with time in service. It is of great significance to efficiently and reliably assess the impact of uncertain factors and reduce these influences on wind turbine aerodynamic performance. This paper establishes an uncertainty analysis and robustness optimization model of wind turbine aerodynamic performance considering wind speed and pitch angle error uncertainties. An approach combined the no-instrusive probabilistic collocation method is used, and the blade element momentum theory is applied to quantify influences of variable uncertainties on NREL 5 MW wind turbine aerodynamic performance. The optimization target is to reduce the sensitivity of wind turbine aerodynamic performance to uncertainties, as well as maintain capture power. The results show that the wind turbine aerodynamic and mechanical performance will be greatly affected with uncertain factors. By optimizing and adjusting wind turbine rotor speed and blade pitch angle, the wind turbine rotor power and thrust load variation can be reduced to 9.14% and 9.36%, respectively, which indeed reduces the uncertainty effects.

1.
O.
Summerfield-Ryan
and
S.
Park
, “
The power of wind: The global wind energy industry's successes and failures
,”
Ecol. Econ.
210
,
107841
(
2023
).
2.
K. C. S.
Kwok
and
G.
Hu
, “
Wind energy system for buildings in an urban environment
,”
J. Wind Eng. Ind. Aerodyn.
234
,
105349
(
2023
).
3.
N.
Pholdee
,
S.
Bureerat
, and
W.
Nuantong
, “
Kriging surrogate-based genetic algorithm optimization for blade design of a horizontal axis wind turbine
,”
Comput. Model. Eng. Sci.
126
(
1
),
261
273
(
2021
).
4.
A.
Kamel
,
K.
Dammak
,
A.
El Hami
et al, “
A modified hybrid method for a reliability-based design optimization applied to an offshore wind turbine
,”
Mech. Adv. Mater. Struct.
29
(
9
),
1229
1242
(
2022
).
5.
S.
Rehman
,
M. M.
Alam
,
L. M.
Alhems
et al, “
Horizontal axis wind turbine blade design methodologies for efficiency enhancement—A review
,”
Energies
11
(
3
),
506
(
2018
).
6.
A.
Abutunis
,
R.
Hussein
, and
K.
Chandrashekhara
, “
A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application
,”
Renewable Energy
136
,
1281
1293
(
2019
).
7.
K.
Shaler
,
E.
Branlard
,
A.
Platt
et al, “
Preliminary introduction of a free vortex wake method into OpenFAST
,”
J. Phys.: Conf. Ser.
1452
(
1
),
012064
(
2020
).
8.
Y.
Cai
,
H.
Zhao
,
X.
Li
et al, “
Effects of yawed inflow and blade-tower interaction on the aerodynamic and wake characteristics of a horizontal-axis wind turbine
,”
Energy
264
,
126246
(
2023
).
9.
G.
Kavari
,
M.
Tahani
, and
M.
Mirhosseini
, “
Wind shear effect on aerodynamic performance and energy production of horizontal axis wind turbines with developing blade element momentum theory
,”
J. Cleaner Prod.
219
,
368
376
(
2019
).
10.
Y.
Li
,
K.
Wei
,
W.
Yang
et al, “
Improving wind turbine blade based on multi-objective particle swarm optimization
,”
Renewable Energy
161
,
525
542
(
2020
).
11.
L.
Jia
,
J.
Hao
,
J.
Hall
et al, “
A reinforcement learning based blade twist angle distribution searching method for optimizing wind turbine energy power
,”
Energy
215
,
119148
(
2021
).
12.
M.
Thapa
,
S. B.
Mulani
, and
R. W.
Walters
, “
Stochastic multi-scale modeling of carbon fiber reinforced composites with polynomial chaos
,”
Compos. Struct.
213
,
82
97
(
2019
).
13.
X. Z.
Tang
,
X. Y.
Wang
,
K. R.
Yuan
et al, “
Quantitation study of influence of wind speed uncertainty on aerodynamic forces of wind turbine
,”
Chin. J. Mech.
52
(
1
),
51
59
(
2020
).
14.
U.
Elosegui
,
I.
Egana
,
A.
Ulazia
et al, “
Pitch angle misalignment correction based on benchmarking and laser scanner measurement in wind farms
,”
Energies
11
(
12
),
3357
(
2018
).
15.
J. C. Y.
Lee
and
M. J.
Fields
, “
An overview of wind-energy-production prediction bias, losses, and uncertainties
,”
Wind Energy Sci.
6
(
2
),
311
365
(
2021
).
16.
H.
Ouyang
,
J.
Liu
,
X.
Han
et al, “
Correlation propagation for uncertainty analysis of structures based on a non-probabilistic ellipsoidal model
,”
Appl. Math. Model.
88
,
190
207
(
2020
).
17.
J. P.
Murcia
,
P. E.
Réthoré
,
N.
Dimitrov
et al, “
Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates
,”
Renewable Energy
119
,
910
922
(
2018
).
18.
I.
Abdallah
,
A.
Natarajan
, and
J. D.
Sørensen
, “
Impact of uncertainty in airfoil characteristics on wind turbine extreme loads
,”
Renewable Energy
75
,
283
300
(
2015
).
19.
Z. Y.
Liu
,
X. D.
Wang
, and
S.
Kang
, “
Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations
,”
Energy
73
,
126
136
(
2014
).
20.
M.
Thapa
and
S.
Missoum
, “
Uncertainty quantification and global sensitivity analysis of composite wind turbine blades
,”
Reliab. Eng. Syst. Saf.
222
,
108354
(
2022
).
21.
P.
Hao
,
H.
Tang
,
Y.
Wang
et al, “
Stochastic isogeometric buckling analysis of composite shell considering multiple uncertainties
,”
Reliab. Eng. Syst. Saf.
230
,
108912
(
2023
).
22.
X.
Tang
,
K.
Yuan
,
N.
Gu
et al, “
An interval quantification-based optimization approach for wind turbine airfoil under uncertainties
,”
Energy
244
,
122623
(
2022
).
23.
V.
Keshavarzzadeh
,
R. G.
Ghanem
, and
D. A.
Tortorelli
, “
Shape optimization under uncertainty for rotor blades of horizontal axis wind turbines
,”
Comput. Meth. Appl. Mech. Eng.
354
,
271
306
(
2019
).
24.
M. S.
Campobasso
,
E.
Minisci
, and
M.
Caboni
, “
Aerodynamic design optimization of wind turbine rotors under geometric uncertainty
,”
Wind Energy
19
(
1
),
51
65
(
2016
).
25.
S. A.
Ning
, “
A simple solution method for the blade element momentum equations with guaranteed convergence
,”
Wind Energy
17
(
9
),
1327
1345
(
2014
).
26.
G. J. A.
Loeven
,
J. A. S.
Witteveen
, and
H.
Bijl
, “
Probabilistic collocation: An efficient non-intrusive approach for arbitrarily distributed parametric uncertainties
,” AIAA Paper No. 2007-317,
2007
.
27.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
et al, “
Definition of a 5-MW reference wind turbine for offshore system development
,”
NREL Technical Report No. TP-500-38060
,
2007
.
28.
Q.
Hu
,
S.
Zhang
,
M.
Yu
et al, “
Short-term wind speed or power forecasting with heteroscedastic support vector regression
,”
IEEE T. Sutain. Energ.
7
(
1
),
241
249
(
2015
).
29.
D. Y.
Kim
,
Y. H.
Kim
, and
B. S.
Kim
, “
Changes in wind turbine power characteristics and annual energy production due to atmospheric stability, turbulence intensity, and wind shear
,”
Energy
214
,
119051
(
2021
).
30.
G.
Ren
,
J.
Liu
,
J.
Wan
et al, “
The analysis of turbulence intensity based on wind speed data in onshore wind farms
,”
Renewable Energy
123
,
756
766
(
2018
).
31.
H.
Li
,
R.
Zhu
,
R.
Wang
et al., “
Wind turbulence intensity of daily and yearly variation analysis in different kinds of terrain
,”
Acta Energ. Sol. Sin.
35
(
11
),
2327
2333
(
2014
).
You do not currently have access to this content.