The reliability and safety of power systems heavily depend on accurate forecasting of new energy generation. However, the non-stationarity and randomness of new energy generation power increase forecasting difficulty. This paper aims to propose a short-term wind power forecasting method with strong characterization ability to accurately understand future new energy generation conditions so as to ensure power systems' reliability and safety. The required input variables for wind power forecasting are determined by the gray relational analysis method. An advanced marine predators algorithm is proposed by improving the marine predators algorithm to enhance convergence ability and probability of escaping local optimal solutions. The advanced marine predators algorithm optimizes support vector regression machine to address the issue of insufficient utilization of its forecasting performance due to the selection of parameter values based on personal experience in traditional methods. Finally, different wind power generation scenarios verify its effectiveness and universality. This study promotes the application of artificial intelligence technology for improving short-term wind power forecasting accuracy, thereby enhancing the reliability and safety level of power systems.

1.
Al-Shammari
,
E.
,
Mohammadi
,
K.
,
Keivani
,
A.
, et al., “
Prediction of daily dewpoint temperature using a model combining the support vector machine with Firefly Algorithm
,”
J. Irrig. Drain. Eng.
142
(5),
04016013
(
2016
).
2.
Allam
,
D.
,
Yousri
,
D. A.
, and
Eteiba
,
M. B.
, “
Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm
,”
Energy Convers. Manage.
123
,
535
548
(
2016
).
3.
Al-qaness
,
M. A. A.
,
Abd Elaziz
,
M.
,
Ewees
,
A. A.
et al, “
A modified adaptive neuro-fuzzy inference system using multi-verse optimizer algorithm for oil consumption forecasting
,”
Electronics
8
(
10
),
1071
(
2019
).
4.
An
,
G.
,
Jiang
,
Z.
,
Cao
,
X.
et al, “
Short-term wind power prediction based on particle swarm optimization-extreme learning machine model combined with Adaboost Algorithm
,”
IEEE Access
9
,
94040
94052
(
2021
).
5.
Aziz
,
M. A. E.
,
Ewees
,
A. A.
, and
Hassanien
,
A. E.
, “
Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
,”
Expert Syst. Appl.
83
,
242
256
(
2017
).
6.
Bazionis
,
I. K.
,
Karafotis
,
P. A.
, and
Georgilakis
,
P. S.
, “
A review of short-term wind power probabilistic forecasting and a taxonomy focused on input data
IET Renewable Power Gener.
16
(
1
),
77
91
(
2021
).
7.
Cao
,
Y.
,
Hu
,
Q.
,
Shi
,
H.
, and
Zhang
,
Y.
, “
Prediction of wind power generation base on neural network in consideration of the fault time
,”
IEEJ Trans. Electr. Electron. Eng.
14
(
5
),
670
679
(
2019
).
8.
Che
,
C.
,
Wang
,
H.
,
Ni
,
X.
, and
Fu
,
Q.
, “
Performance degradation prediction of aeroengine based on attention model and support vector regression
,”
Proc. Inst. Mech. Eng., Part G
236
(
2
),
410
416
(
2022
).
9.
See https://opendata-renewables.engie.com/explore/?sort=modified for
Engie
, “
Data of La Haute Borne wind farm
,” last accessed: August 5, 2023.
10.
Faramarzi
,
A.
,
Heidarinejad
,
M.
,
Mirjalili
,
S.
, and
Gandomi
,
A. H.
, “
Marine predators algorithm: A nature-inspired metaheuristic
,”
Expert Syst. Appl.
152
,
113377
(
2020
).
11.
Fu
,
C.
,
Li
,
G. Q.
,
Lin
,
K. P.
, and
Zhang
,
H.-J.
, “
Short-term wind power prediction based on improved chicken algorithm optimization support vector machine
,”
Sustainability
11
(
2
),
512
(
2019
).
12.
Jiang
,
F.
,
Zhu
,
Q.
,
Yang
,
J.
et al, “
Clustering-based interval prediction of electric load using multi-objective pathfinder algorithm and Elman neural network
,”
Appl. Soft Comput.
129
,
109602
(
2022
).
13.
Jiang
,
X.
,
Wu
,
C.
,
Zhou
,
H.
et al, “
Relationship between thermal properties and structure, composition of briquette through grey relational analysis
,”
J. Appl. Geophys.
206
,
104786
(
2022
).
14.
Jin
,
H.
,
Shi
,
L.
,
Chen
,
X.
et al, “
Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models
,”
Renewable Energy
174
,
1
(
2021
).
15.
Li
,
Q.
,
Wang
,
J.
, and
Zhang
,
H.
, “
A wind speed interval forecasting system based on constrained lower upper bound estimation and parallel feature selection
,”
Knowl.-Based Syst.
231
,
107435
(
2021
).
16.
Liao
,
W.
,
Wu
,
Q.
,
Cui
,
H.
et al, “
Model predictive control based coordinated voltage control for offshore radial DC-connected wind farms
,”
J. Mod. Power Syst. Clean Energy
11
(
1
),
280
289
(
2023
).
17.
Mirjalili
,
S.
,
Gandomi
,
A. H.
,
Mirjalili
,
S. Z.
et al, “
Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
,”
Adv. Eng. Software
114
,
163
191
(
2017
).
18.
Postnikov
,
I.
, “
A reliability assessment of the heating from a hybrid energy source based on combined heat and power and wind power plants
,”
Rel. Eng. Syst. Saf.
221
,
108372
(
2022
).
19.
Sasser
,
C.
,
Yu
,
M.
, and
Delgado
,
R.
, “
Improvement of wind power prediction from meteorological characterization with machine learning models
,”
Renewable Energy
183
,
491
501
(
2022
).
20.
Serkan
,
E.
and
Kan
,
C.
, “
Reliability based modeling and analysis for a wind power system integrated by two wind farms considering wind speed dependence
,”
Rel. Eng. Syst. Saf.
203
,
107077
(
2020
).
21.
Souza
,
L. G. M.
and
Santos
,
D. C.
, “
A performance comparison of robust models in wind turbines power curve estimation: A case study
,”
Neural Process. Lett.
54
(
4
),
3375
3400
(
2022
).
22.
Wang
,
J.
,
Alshelahi
,
A.
,
You
,
M.
et al, “
Integrative density forecast and uncertainty quantification of wind power generation
,”
IEEE Trans. Sustainable Energy
12
(
4
),
1864
1875
(
2021
).
23.
Xiao
,
J.
,
Li
,
C.
,
Liu
,
B.
et al, “
Prediction of wind turbine blade icing fault based on selective deep ensemble model
,”
Knowl.-Based Syst.
242
,
108290
(
2022
).
24.
Yang
,
L.
and
Zhang
,
Z.
, “
A deep attention convolutional recurrent network assisted by k-shape clustering and enhanced memory for short term wind speed predictions
,”
IEEE Trans. Sustainable Energy
13
(
2
),
856
867
(
2022
).
25.
Yao
,
F.
,
Liu
,
W.
,
Zhao
,
X.
et al, “
Integrated machine learning and enhanced statistical approach-based wind power forecasting in Australian Tasmania wind farm
,”
Complexity.
2020
,
9250937
.
26.
Yousuf
,
M. U.
,
Al-Bahadly
,
I.
, and
Avci
,
E.
, “
Wind speed prediction for small sample dataset using hybrid first-order accumulated generating operation-based double exponential smoothing model
,”
Energy Sci. Eng.
10
(
3
),
726
739
(
2022
).
27.
Yun
,
E.
and
Hur
,
J.
, “
Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources
,”
Energy
223
,
120000
(
2021
).
28.
Zhu
,
D.
,
Huang
,
X.
,
Ding
,
Z.
, and
Wei
,
Z.
, “
Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties
,”
Rel. Eng. Syst. Saf.
241
,
109616
(
2024
).
29.
Zuo
,
T.
,
Zhang
,
Y.
,
Xie
,
K.
et al, “
A review of optimization technologies for large-scale wind farm planning with practical and prospective concerns
,”
IEEE Trans. Ind. Inf.
19
(
7
),
7862
7875
(
2023
).
30.
Zhang
,
L.
,
Li
,
J.
,
Wu
,
Y.
et al, “
ARIMA model forecast for wind power time series with different temporal resolutions
,”
Electric Power.
46
(
6
),
176
180
(
2016
).
You do not currently have access to this content.