Due to the multitude of scales present in realistic oceanic conditions, resolving the surface stress is computationally intensive, motivating modeling approaches. In this work, a dynamic wave drag model is developed for large eddy simulation (LES) to quantify the effects of multiscale dynamically rough surfaces on the atmospheric boundary layer. The waves are vertically unresolved, and the total drag due to the horizontally resolved portion of the wave spectrum is computed through a superposition of the force from each mode. As LES can only resolve the horizontal wind–wave interactions to the filter scale Δ, the effects of the horizontally unresolved, subfilter waves are modeled by specifying a roughness length scale characterizing the unresolved wave energy spectrum. This subfilter roughness is set proportional to the subfilter root mean square of the wave height distribution, and the constant of proportionality is evaluated dynamically during the simulation based on the assumption that the total drag force at the wave surface is independent of the filter scale. The dynamic approach is used to simulate the airflow over a spectrum of moving waves, and the results are validated against high-fidelity phase-resolved simulations. The dynamic approach combined with the wave spectrum drag model is then used to study flow through a fixed-bottom offshore wind farm array, equivalent to an infinite farm, with each turbine represented using an actuator disk model. The dynamic model accurately adapts to the changing velocity field and accurately predicts the mean velocity profiles and power produced from the offshore wind farm. Furthermore, the effect of the wind–wave interactions on the mean velocity profiles, power production, and kinetic energy budget is quantified.

1.
W. D.
Musial
,
P. C.
Beiter
,
P.
Spitsen
,
J.
Nunemaker
, and
V.
Gevorgian
, “
2018 Offshore Wind Technologies Market Report
,” Technical Report,
2019
.
2.
M. D.
Esteban
,
J. J.
Diez
,
J. S.
López
, and
V.
Negro
, “
Why offshore wind energy?
,”
Renewable Energy
36
,
444
450
(
2011
).
3.
L.
Castro-Santos
,
E.
Martins
, and
C.
Guedes Soares
, “
Economic comparison of technological alternatives to harness offshore wind and wave energies
,”
Energy
140
,
1121
1130
(
2017
).
4.
Y.-H.
Lin
and
A. D.
Hasan
, “
Transient analysis of the slamming wave load on an offshore wind turbine foundation generated by different types of breaking waves
,”
J. Renewable Sustainable Energy
14
,
053302
(
2022
).
5.
M. B.
Christiansen
and
C. B.
Hasager
, “
Wake effects of large offshore wind farms identified from satellite SAR
,”
Remote Sens. Environ.
98
,
251
268
(
2005
).
6.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J. G.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E. S.
Politis
, and
P. K.
Chaviaropoulos
, “
Modelling and measuring flow and wind turbine wakes in large wind farms offshore
,”
Wind Energy
12
,
431
444
(
2009
).
7.
O.
Ferčák
,
J.
Bossuyt
,
N.
Ali
, and
R. B.
Cal
, “
Decoupling wind-wave-wake interactions in a fixed-bottom offshore wind turbine
,”
Appl. Energy
309
,
118358
(
2022
).
8.
T.
Uchida
and
Y.
Ohya
, “
Large-eddy simulation of turbulent airflow over complex terrain
,”
J. Wind Eng. Ind. Aerodyn.
91
,
219
229
(
2003
).
9.
R.
Matai
and
P.
Durbin
, “
Large-eddy simulation of turbulent flow over a parametric set of bumps
,”
J. Fluid Mech.
866
,
503
525
(
2019
).
10.
J.
Finnigan
,
K.
Ayotte
,
I.
Harman
,
G.
Katul
,
H.
Oldroyd
,
E.
Patton
,
D.
Poggi
,
A.
Ross
, and
P.
Taylor
, “
Boundary-layer flow over complex topography
,”
Boundary-Layer Meteorol.
177
,
247
313
(
2020
).
11.
P. P.
Sullivan
,
J. B.
Edson
,
T.
Hristov
, and
J. C.
McWilliams
, “
Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves
,”
J. Atmos. Sci.
65
,
1225
1245
(
2008
).
12.
P. P.
Sullivan
,
J. C.
McWilliams
, and
E. G.
Patton
, “
Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves
,”
J. Atmos. Sci.
71
,
4001
4027
(
2014
).
13.
X.
Hao
and
L.
Shen
, “
Wind-wave coupling study using LES of wind and phase-resolved simulation of nonlinear waves
,”
J. Fluid Mech.
874
,
391
425
(
2019
).
14.
J.
Wu
,
S.
Popinet
, and
L.
Deike
, “
Revisiting wind wave growth with fully coupled direct numerical simulations
,”
J. Fluid Mech.
951
,
A18
(
2022
).
15.
G.
Deskos
,
S.
Ananthan
, and
M. A.
Sprague
, “
Direct numerical simulations of turbulent flow over misaligned traveling waves
,”
Int. J. Heat Fluid Flow
97
,
109029
(
2022
).
16.
K.
Hasselmann
,
T. P.
Barnett
,
E.
Bouws
,
H.
Carlson
,
D. E.
Cartwright
,
K.
Enke
,
J.
Ewing
,
A.
Gienapp
,
D.
Hasselmann
,
P.
Kruseman
et al, “
Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)
,”
Ergaenzungsheft Dtsch. Hydrographischen Z., Reihe A
8
,
1
95
(
1973
).
17.
Y.
Toba
, “
Local balance in the air-sea boundary processes—II. Partition of wind stress to waves and current
,”
J. Oceanogr. Soc. Jpn.
29
,
70
75
(
1973
).
18.
M. A.
Donelan
and
W. J.
Pierson
, “
Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry
,”
J. Geophys. Res.: Oceans
92
,
4971
5029
, https://doi.org/10.1029/JC092iC05p04971 (
1987
).
19.
F.
Fois
,
P.
Hoogeboom
,
F. L.
Chevalier
, and
A.
Stoffelen
, “
An investigation on sea surface wave spectra and approximate scattering theories
,” in
IEEE Geoscience and Remote Sensing Symposium
(
IEEE
,
2014
), pp.
4366
4369
.
20.
M.
Yurovskaya
,
V.
Dulov
,
B.
Chapron
, and
V.
Kudryavtsev
, “
Directional short wind wave spectra derived from the sea surface photography
,”
J. Geophys. Res.: Oceans
118
,
4380
4394
, https://doi.org/10.1002/jgrc.20296 (
2013
).
21.
M.
Ryabkova
,
V.
Karaev
,
J.
Guo
, and
Y.
Titchenko
, “
A review of wave spectrum models as applied to the problem of radar probing of the sea surface
,”
J. Geophys. Res.: Oceans
124
,
7104
7134
, https://doi.org/10.1029/2018JC014804 (
2019
).
22.
A.
Alsam
,
R.
Szasz
, and
J.
Revstedt
, “
The influence of sea waves on offshore wind turbine aerodynamics
,”
J. Energy Resour. Technol.
137
,
051209
(
2015
).
23.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Large-eddy simulation of offshore wind farm
,”
Phys. Fluids
26
,
025101
(
2014
).
24.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Dynamic modelling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield
,”
J. Fluid Mech.
726
,
62
99
(
2013
).
25.
G.
Ducrozet
,
F.
Bonnefoy
, and
Y.
Perignon
, “
Applicability and limitations of highly non-linear potential flow solvers in the context of water waves
,”
Ocean Eng.
142
,
233
244
(
2017
).
26.
S.
Xiao
and
D.
Yang
, “
Large-eddy simulation-based study of effect of swell-induced pitch motion on wake-flow statistics and power extraction of offshore wind turbines
,”
Energies
12
,
1246
(
2019
).
27.
H.
Yang
,
M.
Ge
,
M.
Abkar
, and
X. I.
Yang
, “
Large-eddy simulation study of wind turbine array above swell sea
,”
Energy
256
,
124674
(
2022
).
28.
A.
Ayet
and
B.
Chapron
, “
The dynamical coupling of wind-waves and atmospheric turbulence: A review of theoretical and phenomenological models
,”
Boundary-Layer Meteorol.
183
,
1
33
(
2022
).
29.
A. K.
Aiyer
,
L.
Deike
, and
M. E.
Mueller
, “
A sea surface-based drag model for large-eddy simulation of wind–wave interaction
,”
J. Atmos. Sci.
80
,
49
62
(
2023
).
30.
A. K.
Aiyer
,
L.
Deike
, and
M. E.
Mueller
, “
A wall-modeled approach accounting for wave stress in large eddy simulations of offshore wind farms
,”
J. Phys.: Conf. Ser.
2265
,
022013
(
2022
).
31.
H.
Charnock
, “
Wind stress on a water surface
,”
Q. J. R. Meteorol. Soc.
81
,
639
640
(
1955
).
32.
P. K.
Taylor
and
M. J.
Yelland
, “
The dependence of sea surface roughness on the height and steepness of the waves
,”
J. Phys. Oceanogr.
31
,
572
590
(
2001
).
33.
W. M.
Drennan
,
H. C.
Graber
,
D.
Hauser
, and
C.
Quentin
, “
On the wave age dependence of wind stress over pure wind seas
,”
J. Geophys. Res.: Oceans
108
,
8062
, https://doi.org/10.1029/2000JC000715 (
2003
).
34.
G.
Deskos
,
J. C. Y.
Lee
,
C.
Draxl
, and
M. A.
Sprague
, “
Review of wind-wave coupling models for large-eddy simulation of the marine atmospheric boundary layer
,”
J. Atmos. Sci.
78
,
3025
3045
(
2021
).
35.
W.
Anderson
and
C.
Meneveau
, “
Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces
,”
J. Fluid Mech.
679
,
288
314
(
2011
).
36.
L.
Grare
,
W. L.
Peirson
,
H.
Branger
,
J. W.
Walker
,
J. P.
Giovanangeli
, and
V.
Makin
, “
Growth and dissipation of wind-forced, deep-water waves
,”
J. Fluid Mech.
722
,
5
50
(
2013
).
37.
P. P.
Sullivan
,
J. C.
McWilliams
, and
C. H.
Moeng
, “
Simulation of turbulent flow over idealized water waves
,”
J. Fluid Mech.
404
,
47
85
(
2000
).
38.
D.
Yang
and
L.
Shen
, “
Direct-simulation-based study of turbulent flow over various waving boundaries
,”
J. Fluid Mech.
650
,
131
180
(
2010
).
39.
T.
Cao
and
L.
Shen
, “
A numerical and theoretical study of wind over fast-propagating water waves
,”
J. Fluid Mech.
919
,
A38
(
2021
).
40.
T.
Cao
,
B.-Q.
Deng
, and
L.
Shen
, “
A simulation-based mechanistic study of turbulent wind blowing over opposing water waves
,”
J. Fluid Mech.
901
,
A27
(
2020
).
41.
M. A.
Donelan
,
A. V.
Babanin
,
I. R.
Young
, and
M. L.
Banner
, “
Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input
,”
J. Phys. Oceanogr.
36
,
1672
1689
(
2006
).
42.
M. P.
Buckley
,
F.
Veron
, and
K.
Yousefi
, “
Surface viscous stress over wind-driven waves with intermittent airflow separation
,”
J. Fluid Mech.
905
,
A31
(
2020
).
43.
J. W.
Miles
, “
On the generation of surface waves by shear flows
,”
J. Fluid Mech.
3
,
185
204
(
1957
).
44.
M.
Donelan
, “
Air-sea interaction,” in The Sea, edited by B. Le Méhauté and D. M. Hanes
Wiley-Interscience
, New York, (
1990
), Vol. 9A, pp.
239
292
.
45.
D.
Yang
,
L.
Shen
, and
C.
Meneveau
, “
An assessment of dynamic subgrid-scale sea-surface roughness models
,”
Flow, Turbul. Combust.
91
,
541
563
(
2013
).
46.
V. K.
Makin
,
V. N.
Kudryavtsev
, and
C.
Mastenbroek
, “
Drag of the sea surface
,”
Boundary-Layer Meteorol.
73
,
159
182
(
1995
).
47.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Effect of downwind swells on offshore wind energy harvesting—A large-eddy simulation study
,”
Renewable Energy
70
,
11
23
(
2014
).
48.
C. W.
Fairall
,
E. F.
Bradley
,
D. P.
Rogers
,
J. B.
Edson
, and
G. S.
Young
, “
Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment
,”
J. Geophys. Res.: Oceans
101
,
3747
3764
, https://doi.org/10.1029/95JC03205 (
1996
).
49.
O.
Desjardins
,
G.
Blanquart
,
G.
Balarac
, and
H.
Pitsch
, “
High order conservative finite difference scheme for variable density low Mach number turbulent flows
,”
J. Comput. Phys.
227
,
7125
7159
(
2008
).
50.
J. F.
MacArt
and
M. E.
Mueller
, “
Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization
,”
J. Comput. Phys.
326
,
569
595
(
2016
).
51.
W.
Rozema
,
H. J.
Bae
,
P.
Moin
, and
R.
Verstappen
, “
Minimum-dissipation models for large-eddy simulation
,”
Phys. Fluids
27
,
085107
(
2015
).
52.
M.
Abkar
and
P.
Moin
, “
Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model
,”
Boundary-Layer Meteorol.
165
,
405
419
(
2017
).
53.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
, and
E.
Bossanyi
,
Wind Energy Handbook
(
John Wiley & Sons
,
2011
).
54.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
55.
C. R.
Shapiro
,
D. F.
Gayme
, and
C.
Meneveau
, “
Filtered actuator disks: Theory and application to wind turbine models in large eddy simulation
,”
Wind Energy
22
,
1414
1420
(
2019
).
56.
O. M.
Phillips
, “
Spectral and statistical properties of the equilibrium range in wind-generated gravity waves
,”
J. Fluid Mech.
156
,
505
531
(
1985
).
57.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large-eddy simulations
,”
Annu. Rev. Fluid Mech.
34
,
349
374
(
2002
).
58.
S.
Kawai
and
J.
Larsson
, “
Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy
,”
Phys. Fluids
24
,
015105
(
2012
).
59.
P. A.
Hwang
, “
Wave number spectrum and mean square slope of intermediate-scale ocean surface waves
,”
J. Geophys. Res.: Oceans
110
,
C10029
, https://doi.org/10.1029/2005JC003002 (
2005
).
60.
S. E.
Belcher
and
J. C. R.
Hunt
, “
Turbulent flow over hills and waves
,”
Annu. Rev. Fluid Mech.
30
,
507
538
(
1998
).
61.
L.
Cavaleri
,
J.-H.
Alves
,
F.
Ardhuin
,
A.
Babanin
,
M.
Banner
,
K.
Belibassakis
,
M.
Benoit
,
M.
Donelan
,
J.
Groeneweg
,
T.
Herbers
,
P.
Hwang
,
P.
Janssen
,
T.
Janssen
,
I.
Lavrenov
,
R.
Magne
,
J.
Monbaliu
,
M.
Onorato
,
V.
Polnikov
,
D.
Resio
,
W.
Rogers
,
A.
Sheremet
,
J.
McKee Smith
,
H.
Tolman
,
G.
van Vledder
,
J.
Wolf
, and
I.
Young
, “
Wave modelling—The state of the art
,”
Prog. Oceanogr.
75
,
603
674
(
2007
).
62.
N.
Kihara
,
H.
Hanazaki
,
T.
Mizuya
, and
H.
Ueda
, “
Relationship between airflow at the critical height and momentum transfer to the traveling waves
,”
Phys. Fluids
19
,
015102
(
2007
).
63.
Y.
Liu
,
D.
Yang
,
X.
Guo
, and
L.
Shen
, “
Numerical study of pressure forcing of wind on dynamically evolving water waves
,”
Phys. Fluids
22
,
041704
(
2010
).
64.
W. J.
Plant
, “
A relationship between wind stress and wave slope
,”
J. Geophys. Res.: Oceans
87
,
1961
1967
, https://doi.org/10.1029/JC087iC03p01961 (
1982
).
65.
J.
Miles
, “
Surface-wave generation revisited
,”
J. Fluid Mech.
256
,
427
441
(
1993
).
66.
J. P.
Goit
and
A.
Önder
, “
The effect of coastal terrain on nearshore offshore wind farms: A large-eddy simulation study
,”
J. Renewable Sustainable Energy
14
,
043304
(
2022
).
67.
Y. T.
Wu
and
F.
Porté-Agel
, “
Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parametrisations
,”
Boundary-Layer Meteorol.
138
,
345
366
(
2011
).
68.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary-Layer Meteorol.
174
,
1
59
(
2020
).
69.
X.
Yang
,
S.
Kang
, and
F.
Sotiropoulos
, “
Computational study and modeling of turbine spacing effects in infinite aligned wind farms
,”
Phys. Fluids
24
,
115107
(
2012
).
70.
S.
Frandsen
,
R.
Barthelmie
,
S.
Pryor
,
O.
Rathmann
,
S.
Larsen
,
J.
Højstrup
, and
M.
Thøgersen
, “
Analytical modelling of wind speed deficit in large offshore wind farms
,”
Wind Energy
9
,
39
53
.
You do not currently have access to this content.