The rapid change of wind speed and direction on 21 August 2017 is studied using Doppler lidar measurements at five sites of the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) facility in north-central Oklahoma. The Doppler lidar data were investigated along with meteorological variables such as temperature, humidity, and turbulence available from the large suite of instrumentation deployed at the SGP Central Facility (C1) during the Land-Atmosphere Feedback Experiment in August 2017. Lidar measurements at five sites, separated by 55–70 km, allowed us to document the development and evolution of the wind flow over the SGP area, examine synoptic conditions to understand the mechanism that leads to the ramp event, and estimate the ability of the High-Resolution Rapid Refresh model to reproduce this event. The flow feature in question is an atmospheric bore, a small-scale phenomenon that is challenging to represent in models, that was generated by a thunderstorm outflow northwest of the ARM SGP area. The small-scale nature of bores, its impact on power generation, and the modeling challenges associated with representing bores are discussed in this paper. The results also provide information about model errors between sites of different surface and vegetation types.

1.
Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP)
(2016). “Scanning Doppler lidars at 5 SGP sites,”
ARM Data Discovery
, https://www.arm.gov/capabilities/observatories/sgp
2.
Adler
,
B.
,
Wilczak
,
J. M.
,
Kenyon
,
J.
,
Bianco
,
L.
,
Djalalova
,
I. V.
,
Olson
,
J. B.
, and
Turner
,
D. D.
, “
Evaluation of a cloudy cold-air pool in the Columbia river basin in different versions of the High-Resolution Rapid Refresh (HRRR) model
,”
Geosci. Model Dev.
16
,
597
619
(
2023
).
3.
Ahn
,
E.
and
Hur
,
J.
, “
A practical metric to evaluate the ramp events of wind generating resources to enhance the security of smart energy systems
,”
Energies
15
,
2676
(
2022
).
4.
Banta
,
R. M.
,
Pichugina
,
Y. L.
, and
Newsom
,
R. K.
, “
Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer
,”
J. Atmos. Sci.
60
,
2549
2555
(
2003
).
5.
Banta
,
R. M.
,
Pichugina
,
Y. L.
, and
Brewer
,
W. A.
, “
Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet
,”
J. Atmos. Sci.
63
,
2700
2719
(
2006
).
5.
Banta
,
R. M.
,
Pichugina
,
Y. L.
,
Kelley
,
N. D.
,
Brewer
,
W. A.
, and
Hardesty
,
R. M.
, “
Wind-energy meteorology: Insight into wind properties in the turbine rotor layer of the atmosphere from high-resolution Doppler lidar
,”
Bull. Am. Meteorol. Soc.
94
,
883
902
(
2013
).
6.
Banta
,
R. M.
,
Pichugina
,
Y. L.
,
Brewer
,
W. A.
,
Choukulkar
,
A.
,
Lantz
,
K. O.
,
Olson
,
J. B.
,
Kenyon
,
J.
, et al, “
Characterizing NWP model errors using Doppler-lidar measurements of recurrent regional diurnal flows: Marine-air intrusions into the Columbia-river basin
,”
Mon. Weather Rev.
148
,
929
953
(
2020
).
7.
Banta
,
R. M.
,
Pichugina
,
Y. L.
,
Darby
,
L. S.
,
Brewer
,
W. A.
,
Olson
,
J. B.
,
Kenyon
,
J. S.
et al, “
Doppler-lidar evaluation of HRRR-model skill at simulating summertime wind regimes in the Columbia river basin during WFIP2
,”
Weather Forecast.
36
,
1961
1983
(
2021
).
8.
Banta
,
R. M.
,
Pichugina
,
Y. L.
,
Brewer
,
W. A.
,
Balmes
,
K. A.
,
Adler
,
B.
,
Sedlar
,
J.
,
Darby
,
L. S.
,
Turner
,
D. D.
,
Kenyon
,
J. S.
,
Strobach
,
E. J.
,
Carroll
,
B. J.
,
Sharp
,
J.
,
Stoelinga
,
M. T.
,
Cline
,
J.
, and
Fernando
,
H. J. S.
, “
Measurements and model improvement: Insight into NWP model error using Doppler lidar and other WFIP2 measurement systems
,”
Mon. Weather Rev.
152
,
3063
(
2023
).
9.
Benjamin
,
S. G.
,
Weygandt
,
S. S.
,
Brown
,
J. M.
,
Hu
,
M.
,
Alexander
,
C.
,
Smirnova
,
T. G.
,
Olson
,
J. B.
,
James
,
E.
,
Dowell
,
D. C.
,
Grell
,
G. A.
et al, “
A North American hourly assimilation and model forecast cycle: The rapid refresh
,”
Mon. Weather Rev.
144
,
1669
1694
(
2016
).
10.
Berg
,
L. K.
,
Riihimaki
,
L. D.
,
Qian
,
Y.
,
Yan
,
H.
, and
Huang
,
M.
, “
The low-level jet over the Southern Great Plains determined from observations and reanalyses and its impact on moisture transport
,”
J. Clim.
28
,
6682
6706
(
2015
).
11.
Blake
,
B. T.
,
Parsons
,
D. B.
,
Haghi
,
K. R.
, and
Castleberry
,
S. G.
, “
The structure, evolution, and dynamics of a nocturnal convective system simulated using the WRF-ARW model
,”
Mon. Weather Rev.
145
,
3179
3201
(
2017
).
12.
Blackadar
,
A. K.
, “
Boundary layer wind maxima and their significance for the growth of nocturnal inversions
,”
Bull. Am. Meteorol. Soc.
38
,
283
290
(
1957
).
13.
Behrendt
,
A.
,
Wulfmeyer
,
V.
,
Hammann
,
E.
,
Muppa
,
S. K.
, and
Pal
,
S.
, “
Profiles of second- to third-order moments of turbulent temperature fluctuations in the convective boundary layer: First measurements with rotational Raman lidar
,”
Atmos. Chem. Phys.
15
,
5485
5500
(
2015
).
14.
Bianco
,
L.
,
Djalalova
,
I. V.
,
Wilczak
,
J. M.
,
Olson
,
J. B.
et al, “
Impact of model improvements on 80 m wind speeds during the second Wind Forecast Improvement Project (WFIP2)
,”
Geosci. Model. Dev.
12
,
4803
4821
(
2019
).
15.
Bonner
,
W. D.
, “
Case study of thunderstorm activity in relation to the low-level jet
,”
Mon. Weather Rev.
94
,
167
178
(
1966
).
16.
Bonin
,
T. A.
et al, “
Evaluation of turbulence measurement techniques from a single Doppler lidar
,”
Atmos. Meas. Tech.
10
,
3021
3039
(
2017
).
17.
Bossavy
,
A.
,
Girard
,
R.
, and
Kariniotakis
,
G.
, “
Forecasting uncertainty related to ramps of wind power production
,” in
Proceedings of the EuropeanWind Energy Conference and Exhibition 2010, EWEC 2010
,
Warsaw, Poland
, 20 April
2010
.
18.
Carroll
,
B. J.
,
Demoz
,
B. B.
, and
Delgado
,
R.
, “
An overview of low-level jet winds and corresponding mixed layer depths during PECAN
,”
J. Geophys. Res.: Atmos.
124
,
9141
9160
, https://doi.org/10.1029/2019JD030658 (
2019
).
19.
Dalton
,
A.
,
Bekker
,
B.
, and
Koivisto
,
M. J.
, “
Simulation and detection of wind power ramps and identification of their causative atmospheric circulation patterns
,”
Electr. Power Syst. Res.
192
,
106936
(
2021
).
20.
Davies
,
L.
,
Reeder
,
M. J.
, and
Lane
,
T. P.
, “
A climatology of atmospheric pressure jumps over southeastern Australia
,”
Q. J. R. Meteorolog. Soc.
143
(
702
),
439
449
(
2017
).
21.
DeMarco
,
A.
and
Basu
,
S.
, “
On the tails of the wind ramp distributions
,”
Wind Energy
21
,
892
905
(
2018
).
22.
Deppe
,
A. J.
,
Gallus
,
W. A.
, and
Takle
,
E. S.
, “
A WRF ensemble for improved wind speed forecasts at turbine height
,”
Weather Forecast.
28
,
212
228
(
2012
).
23.
Dowell
,
D. C.
,
Curtis
,
A. R.
,
James
,
E. P.
et al, “
The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description
,”
Weather Forecast.
37
(
8
),
1371
(
2022
).
24.
Drew
,
D. R.
,
Barlow
,
J. F.
, and
Coker
,
P. J.
, “
Identifying and characterising large ramps in power output of offshore wind farms
,”
Renewable Energy
127
,
195
203
(
2018
).
25.
Draxl
,
C.
,
Worsnop
,
R.
,
Xia
,
G.
,
Chand
,
D.
,
Lundquist
,
J. K.
,
Pichugina
,
Y.
,
Sharp
,
J.
,
Wedam
,
G.
,
Wilczak
,
J.
, and
Berg
,
L.
, “
Mountain waves impact wind power generation
,”
Wind Energy Sci.
6
(
1
),
45
(
2021
).
26.
Ela
,
E.
and
Kemper
,
J.
, “
Wind plant ramping behavior
,”
Technical Report No. NREL/TP-550-46938
(
2009
).
27.
Feng
,
J.
and
X.
Wang
, “Impact of assimilating upper-level dropsonde observations collected during the TCI field campaign on the prediction of intensity and structure of Hurricane Patricia (2015),”
Mon. Weather Rev.
147,
3069
3089
(
2019
).
27.
Ferreira
,
C.
,
Gama
,
J.
,
Matias
,
L.
,
Botterud
,
A.
, and
Wang
,
J.
, “
A survey on wind power ramp forecasting
,”
Technical Report No. ANL/DIS-10-13
(
2010
).
28.
Freedman
,
J.
,
Markus
,
M.
, and
Penc
,
R
,
Analysis of West Texas Wind Plant Ramp-up and Ramp-down Events
(
AWS Truewind, LLC
,
2008
).
29.
Freedman
,
J.
and
Zack
,
J.
,
Identifying Ramp Events
(
National Wind Watch
,
2012
).
30.
Fritsch
,
J. M.
,
Kane
,
R. J.
, and
Chelius
,
C. R.
, “
The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States
,”
J. Clim. Appl. Meteorol.
25
,
1333
1345
(
1986
).
31.
Haghi
,
K. R.
,
Parsons
,
D. B.
, and
Shapiro
,
A.
, “
Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment
,”
Mon. Weather Rev.
145
,
3929
3946
(
2017
).
32.
Haghi
,
K. R.
,
Geerts
,
B.
,
Chipilski
,
H. G.
,
Johnson
,
A.
,
Degelia
,
S.
,
Imy
,
D.
,
Parsons
,
D. B.
,
Adams-Selin
,
R. D.
,
Turner
,
D. D.
, and
Wang
,
X.
, “
Bore-ing into nocturnal convection
,”
Bull. Am. Meteorol. Soc.
100
,
1103
1121
(
2019
).
33.
Holton
,
J. R.
, “The diurnal boundary layer wind oscillation above sloping terrain,”
Tellus
19
,
199
205
(
1967
).
33.
James
,
E. P.
,
Alexander
,
C. R.
,
Dowell
,
D. C.
,
Weygandt
,
S. S.
,
Benjamin
,
S. G.
,
Manikin
,
G. S.
,
Brown
,
J. M.
,
Olson
,
J. B.
,
Hu
,
M.
,
Smirnova
,
T. G.
,
Ladwig
,
T.
,
Kenyon
,
J. S.
, and
Turner
,
D. D.
, “
The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part II: Forecast performance
,”
Weather Forecast.
37
(
8
),
1397
1417
(
2022
).
34.
Johnson
,
A.
,
Wang
,
X.
,
Haghi
,
K.
, and
Parsons
,
D.
, “
Evaluation of forecasts of a convectively generated bore using an intensively observed case study from PECAN
,”
Mon. Weather Rev.
146
,
3097
3122
(
2018
).
35.
Gallego
,
C.
,
Cuerva
,
A.
, and
Costa
,
A.
, “
Detecting and characterizing ramp events in wind power time series
,”
J. Phys.: Conf. Ser.
555
,
012040
(
2014
).
37.
Greaves
,
B.
,
Collins
,
J.
,
Parkes
,
J.
, and
Tindal
,
A.
, “
Temporal forecast uncertainty for ramp events
,”
Wind Eng.
33
(
4
),
309
319
(
2009
).
38.
Geerts
,
B.
et al, “
The 2015 plains elevated convection at night field project
,”
Bull. Am. Meteorol. Soc.
98
,
767
786
(
2017
).
39.
Hammann
,
E.
,
Behrendt
,
A.
,
Le Mounier
,
F.
, and
Wulfmeyer
,
V.
, “
Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment
,”
Atmos. Chem. Phys.
15
,
2867
2881
(
2015
).
40.
Knupp
,
K.
, “
Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer
,”
J. Atmos. Sci.
63
,
2016
2035
(
2006
).
41.
Koch
,
S. E.
,
Melfi
,
S. H.
,
Skillman
,
W. C.
,
Whiteman
,
D.
,
Dorian
,
P. B.
, and
Ferrare
,
R.
, “
Structure of an internal bore and dissipating gravity current as revealed by Raman lidar
,”
Mon. Weather Rev.
119
,
857
887
(
1991
).
42.
Koch
,
S. E.
,
Feltz
,
W.
,
Fabry
,
F.
,
Pagowski
,
M.
,
Geerts
,
B.
,
Bedka
,
K. M.
,
Miller
,
D. O.
, and
Wilson
,
J. W.
, “
Turbulent mixing processes in atmospheric bores and solitary waves deduced from profiling systems and numerical simulation
,”
Mon. Weather Rev.
136
,
1373
1400
(
2008a
).
43.
Koch
,
S. E.
,
Flamant
,
C.
,
Wilson
,
J. W.
,
Gentry
,
B. M.
, and
Jamison
,
B. D.
, “
An atmospheric soliton observed with Doppler radar, differential absorption lidar, and a molecular Doppler lidar
,”
J. Atmos. Oceanic Technol.
25
,
1267
1287
(
2008b
).
44.
Lee
,
D.
,
Kim
,
J.
, and
Baldick
,
R.
,
Ramp Rates Control of Wind Power Output Using a Storage System and Gaussian Processes
(
University of Texas at Austin, Electrical and Computer Engineering
,
Austin
,
2012
).
45.
Lee
,
T. R.
and
Buban
,
M.
, “
Evaluation of Monin-Obukhov and bulk Richardson parameterizations for surface-atmosphere exchange
,”
J. Appl. Meteorol. Climatol.
59
(
6
),
1091
1107
(
2020
).
46.
Lee
,
T. R.
,
Buban
,
M. S.
, and
Meyers
,
T. P.
, “
Application of bulk Richardson parameterizations of surface fluxes to heterogeneous land surfaces
,”
Mon. Weather Rev.
149
,
3243
3264
(
2021
).
47.
Loveless
,
D. M.
,
Wagner
,
T. J.
,
Turner
,
D. D.
,
Ackerman
,
S. A.
, and
Feltz
,
W. F.
, “
A composite perspective on bore passages during the PECAN campaign
,”
Mon. Weather Rev.
147
,
1395
1413
(
2019
).
48.
Martin
,
E. R.
and
Johnson
,
R. H.
, “
An observational and modeling study of an atmospheric internal bore during NAME 2004
,”
Mon. Weather Rev.
136
(
11
),
4150
4167
(
2008
).
49.
McCaffrey
,
K.
,
Wilczak
,
J. M.
,
Bianco
,
L.
,
Grimit
,
E.
,
Sharp
,
J.
,
Banta
,
R. M.
,
Friedrich
,
K.
,
Fernando
,
H. J. S.
,
Krishnamurthy
,
R.
,
Leo
,
L. S.
, and
Muradyan
,
P.
, “
Identification and characterization of persistent cold pool events from temperature and wind profilers in the Columbia river basin
,”
J. Appl. Meteorol. Climatol.
58
,
2533
2551
(
2019
).
50.
Mitchell
,
M. J.
,
Arritt
,
R. W.
, and
Labas
,
K.
, “
A climatology of warm season Great Plains low-level jet using wind profiler observations
,”
Weather Forecast.
10
,
576
591
(
1995
).
51.
Mueller
,
D.
,
Geerts
,
B.
,
Wang
,
Z.
,
Deng
,
M.
, and
Grasmick
,
C.
, “
Evolution and vertical structure of an undular bore observed on 20 June 2015 during PECAN
,”
Mon. Weather Rev.
145
,
3775
3794
(
2017
).
52.
Newsom
,
R. K.
and
Krishnamurthy
,
R.
,
Doppler Lidar (DL) Instrument Handbook
(
U.S. Department of Energy
,
2020
).
53.
Olson
,
J. B.
,
Kenyon
,
J. S.
,
Djalalova
,
I.
,
Bianco
,
L.
,
Turner
,
D. D.
,
Pichugina
,
Y.
,
Choukulkar
,
A.
,
Toy
,
M. D.
,
Brown
,
J. M.
,
Angevine
,
W. M.
,
Akish
,
E.
,
Bao
,
J.-W.
,
Jimenez
,
P.
,
Kosovic
,
B.
,
Lundquist
,
K. A.
,
Draxl
,
C.
,
Lundquist
,
J. K.
,
McCaa
,
J.
,
McCaffrey
,
K.
,
Lantz
,
K.
,
Long
,
C.
,
Wilczak
,
J.
,
Banta
,
R.
,
Marquis
,
M.
,
Redfern
,
S.
,
Berg
,
L. K.
,
Shaw
,
W.
, and
Cline
,
J.
, “
Improving wind energy forecasting through numerical weather prediction model development
,”
Bull. Am. Meteorol. Soc.
100
,
2201
2220
(
2019
).
54.
Osborne
,
S. R.
and
Lapworth
,
A.
, “
Initiation and propagation of an atmospheric bore in a numerical forecast model: A comparison with observations
,”
J. Appl. Meteorol. Climatol.
56
,
2999
3016
(
2017
).
55.
Parker
,
M. D.
, “
Self-organization and maintenance of simulated nocturnal convective systems from PECAN
,”
Mon. Weather Rev.
149
,
999
1022
(
2021
).
56.
Parsons
,
D. B.
,
Haghi
,
K. R.
,
Halbert
,
K. T.
,
Elmer
,
B.
, and
Wang
,
J.
, “
The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains
,”
J. Atmos. Sci.
76
,
43
68
(
2019
).
57.
Pichault
,
M.
,
Vincent
,
C.
,
Skidmore
,
G.
, and
Monty
,
J.
, “
Characterization of intra-hourly wind power ramps at the wind farm scale and associated processes
,”
Wind Energy Sci.
6
(
1
),
131
147
(
2021
).
58.
Pichugina
,
Y. L.
and
Banta
,
R. M.
, “
Stable boundary-layer depth from high-resolution measurements of the mean wind profile
,”
J. Appl. Meteorol. Climatol.
49
,
20
35
(
2010
).
59.
Pichugina
,
Y. L.
,
Banta
,
R. M.
,
Olson
,
J. B.
,
Carley
,
J. R.
,
Marquis
,
M. C.
,
Brewer
,
W. A.
,
Wilczak
,
J. M.
,
Djalalova
,
I. V.
,
Bianco
,
L.
,
James
,
E. P.
,
Benjamin
,
S. G.
, and
Cline
,
J.
, “
Assessment of NWP forecast models in simulating offshore winds through the lower boundary layer by measurements from a ship-based scanning Doppler lidar
,”
Mon. Weather Rev.
145
(
10
),
4277
4301
(
2017
).
60.
Pichugina
,
Y. L.
,
Banta
,
R. M.
et al, “
Spatial variability of winds and HRRR-NCEP model error statistics at three Doppler-lidar sites in the wind-energy generation region of the Columbia river basin
,”
J. Appl. Meteorol. Climatol.
58
,
1633
1656
(
2019
).
61.
Pichugina
,
Y. L.
,
Banta
,
R. M.
,
Brewer
,
W. A.
,
Bianco
,
L.
,
Draxl
,
C.
,
Kenyon
,
J.
,
Lundquist
,
J. K.
,
Olson
,
J. B.
,
Turner
,
D. D.
,
Wharton
,
S.
,
Wilczak
,
J.
,
Baidar
,
S.
,
Berg
,
L. K.
,
Fernando
,
H. J. S.
,
McCarty
,
B. J.
,
Rai
,
R.
,
Roberts
,
B.
,
Sharp
,
J.
,
Shaw
,
W. J.
,
Stoelinga
,
M. T.
, and
Worsnop
,
R.
, “
Evaluating the WFIP2 updates to the HRRR model using scanning Doppler lidar measurements in the complex terrain of the Columbia River Basin
,”
J. Renewable Sustainable Energy
12
(
4
),
043301
(
2020
).
62.
Pichugina
,
Y. L.
,
Banta
,
R. M.
,
Brewer
,
W. A.
,
Kenyon
,
J.
,
Olson
,
J. B.
,
Turner
,
D. D.
,
Wilczak
,
J.
,
Baidar
,
S.
,
Lundquist
,
J. K.
,
Shaw
,
W. J.
, and
Wharton
,
S.
, “
Model evaluation by measurements from collocated remote sensors in complex terrain
,”
Weather Forecast.
37
(
10
),
1829
1853
(
2022
).
63.
Pichugina
,
Y. L.
,
Banta
,
R. M.
,
Brewer
,
W. A.
,
Turner
,
D. D.
,
Wulfmeyer
,
V. O.
,
Strobach
,
E. J.
,
Baidar
,
S.
, and
Carroll
,
B. J.
, “
Doppler lidar measurements of wind variability and LLJ properties in Central Oklahoma during the August 2017 Land-Atmosphere Feedback Experiment
,”
J. Appl. Meteorol. Climatol.
62
,
947
969
(
2023
).
64.
Rai
,
R.
,
Berg
,
L.
,
Newsom
,
R.
,
Kaul
,
C.
,
Mirocha
,
J.
,
Choukulkar
,
A.
,
Brewer
,
A.
,
Pichugina
,
Y.
, and
Banta
,
R.
, “
Characterization of turbulence under different stability conditions using lidar scanning data
,”
J. Phys.: Conf. Ser.
1452
,
012085
(
2020
).
65.
Rottman
,
J. W.
and
Simpson
,
J. E.
, “
The formation of internal bores in the atmosphere: A laboratory model
,”
Q. J. R. Meteorol. Soc.
115
,
941
963
(
1989
).
66.
Sathe
,
A.
,
Mann
,
J.
,
Vasiljevic
,
N.
, and
Lea
,
G.
, “A six-beam method to measure turbulence statistics using ground-based wind lidars,”
Atmos. Meas. Tech.
8
(
2
),
729
740
(
2015
).
66.
Shaw
,
W. J.
,
Berg
,
L. K.
,
Cline
,
J.
,
Draxl
,
C.
,
Grimit
,
E.
,
Lundquist
,
J. K.
,
Marquis
,
M.
,
McCaa
,
J.
,
Olson
,
J.
,
Sivaraman
,
C.
,
Sharp
,
J.
, and
Wilczak
,
J.
, “
The Second Wind Forecast Improvement Project (WFIP 2): General overview
,”
Bull. Am. Meteorol. Soc.
100
,
1687
1699
(
2019
).
67.
Sherry
,
M.
and
Rival
,
D.
, “
Meteorological phenomena associated with wind-power ramps downwind of mountainous terrain
,”
J. Renewable Sustainable Energy
7
,
033101
(
2015
).
68.
Shippert
,
T.
et al (
2016
), “Doppler lidar horizontal wind profiles (DLPROFWIND4NEWS),”
ARM Data Discovery
, http://dx.doi.org/10.5439/1178582
69.
Smith
,
N. H.
and
Ancell
,
B. C.
, “
Ensemble sensitivity analysis of wind ramp events with applications to observation targeting
,”
Mon. Weather Rev.
145
(
7
),
2505
2522
(
2017
).
70.
Song
,
J.
,
Liao
,
K.
,
Coulter
,
R. L.
, and
Lesht
,
B. M.
, “
Climatology of the low-level jet at the Southern Great Plains atmospheric boundary layer experiments site
,”
J. Appl. Meteorol.
44
,
1593
1606
(
2005
).
71.
Stelten
,
S.
and
Gallus
,
W. A.
, Jr.
, “
Pristine nocturnal convective initiation: A climatology and preliminary examination of predictability
,”
Weather Forecast.
32
,
1613
1635
(
2017
).
72.
Toms
,
B. A.
,
Tomaszewski
,
J. A.
,
Turner
,
D. D.
, and
Koch
,
S. E.
, “
Analysis of a lower-tropospheric gravity wave train using direct and remote sensing measurement systems
,”
Mon. Weather Rev.
145
,
2791
2812
(
2017
).
73.
Tripoli
,
G.
and
Cotton
,
W. R.
, “
A numerical study an observed orogenic mesoscale convective system. Part 2: Analysis of governing dynamics
,”
Mon. Weather Rev.
117
,
305
328
(
1989
).
74.
Turner
,
D. D.
and
Loehnert
,
U.
, “
Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI)
,”
J. Appl. Meteorol. Climatol.
53
,
752
771
(
2014
).
75.
Wallace
,
J. M.
, “
Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States
,”
Mon. Weather Rev.
103
,
406
419
(
1975
).
76.
Wharton
,
S.
,
Lundquist
,
J. K.
,
Marjanovic
,
N.
,
Williams
,
J. L.
,
Rhodes
,
M.
,
Chow
,
T. K.
et al, “
Review of wind energy forecasting methods for modeling ramping events
,”
Technical Report No. LLNL-TR-476934
(
2011
).
77.
Whiteman
,
C. D.
,
Bian
,
X.
, and
Zhong
,
S.
, “
Low-level jet climatology from enhanced rawinsonde observations at a site in the Southern Great Plains
,”
J. Appl. Meteorol.
36
,
1363
1375
(
1997
).
78.
Wilczak
,
J. M.
,
Stoelinga
,
M.
,
Berg
,
L. K.
,
Sharp
,
J.
,
Draxl
,
C.
,
McCaffrey
,
K.
,
Banta
,
R. M.
,
Bianco
,
L.
,
Djalalova
,
I.
,
Lundquist
,
J. K.
,
Muradyan
,
P.
,
Choukulkar
,
A.
,
Leo
,
L.
,
Bonin
,
T.
,
Pichugina
,
Y.
,
Eckman
,
R.
,
Long
,
C. N.
,
Lantz
,
K.
,
Worsnop
,
R. P.
,
Bickford
,
J.
,
Bodini
,
N.
,
Chand
,
D.
,
Clifton
,
A.
,
Cline
,
J.
,
Cook
,
D. R.
,
Fernando
,
H. J. S.
,
Friedrich
,
K.
,
Krishnamurthy
,
R.
,
Marquis
,
M.
,
McCaa
,
J.
,
Olson
,
J. B.
,
Otarola-Bustos
,
S.
,
Scott
,
G.
,
Shaw
,
W. J.
,
Wharton
,
S.
, and
White
,
A. B.
, “
The Second Wind Forecast Improvement Project (WFIP2): Observational field campaign
,”
Bull. Am. Meteorol. Soc.
100
,
1701
1723
(
2019
).
79.
Worsnop
,
R. P.
,
Scheuerer
,
M.
,
Hamill
,
T. M.
, and
Lundquist
,
J. K.
, “
Generating wind power scenarios for probabilistic ramp event prediction using multivariate statistical post-processing
,”
Wind Energy Sci.
3
,
371
393
(
2018
).
80.
Wulfmeyer
,
V.
,
Turner
,
D. D.
,
Baker
,
B.
,
Banta
,
R.
,
Behrendt
,
A.
,
Bonin
,
T.
,
Brewer
,
W. A.
,
Buban
,
M.
,
Choukulkar
,
A.
,
Dumas
,
E.
,
Hardesty
,
R. M.
,
Heus
,
T.
,
Ingwersen
,
J.
,
Lange
,
D.
,
Lee
,
T. R.
,
Metzendorf
,
S.
,
Muppa
,
S. K.
,
Meyers
,
T.
,
Newsom
,
R.
,
Osman
,
M.
,
Raasch
,
S.
,
Santanello
,
J.
,
Senff
,
C.
,
Späth
,
F.
,
Wagner
,
T.
, and
Weckwerth
,
T.
, “
A new research approach for observing and characterizing land-atmosphere feedback
,”
Bull. Am. Meteorol. Soc.
99
(
8
),
1639
1667
(
2018
).
81.
Yang
,
Q.
,
Berg
,
L.
,
Pekour
,
M.
,
Fast
,
J.
,
Newsom
,
R.
,
Stoelinga
,
M.
, and
Finley
,
C.
, “
Evaluation of WRF-predicted near-hub-height winds and ramp events over a Pacific northwest site with complex terrain
,”
J. Appl. Meteorol. Climatol.
52
,
1753
(
2013
).
82.
Zhang
,
J.
,
Florita
,
A.
,
Hodge
,
B.
, and
Freedman
,
J.
, “
Ramp forecasting performance from improved short-term wind power forecasting
,” in
Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2A: 40th Design Automation Conference
Buffalo, New York, USA
2014 (
ASME
,
2014
), Paper No.
V02AT03A022
.
83.
Zhang
,
S.
,
Parsons
,
D. B.
,
Xu
,
X.
,
Sun
,
J.
,
Wu
,
T.
,
Xu
,
F.
et al, “
Bores observed during the warm season of 2015–2019 over the southern North China Plain
,”
Geophys. Res. Lett.
49
,
e2022GL099205
, https://doi.org/10.1029/2022GL099205 (
2022
).
You do not currently have access to this content.