This study introduces a metrological approach to measure the aerodynamic shape and the twist of a wind turbine blade. The optical profilometer measurement technique used is laser triangulation. A camera records the image of a line projected onto a section of the blade and, by reconstructing the airfoil shape, the twist angular position of the profile with respect to the axial line of the blade is determined. This methodology is applied to test different sections of a Wortmann FX 63-137 airfoil with a length of 1700 mm. The results of the aerodynamic shape and twist angle are quantitatively verified by comparing them with the ideal or design values. The reconstruction process achieved a resolution of 0.06 mm, and measurement errors in the twist angular position were less than 0.1°. The presented method is efficient, accurate, and low cost to evaluate the blade profiles of low-power wind turbines. However, due to its easy implementation, it is expected to be able to measure any full-scale wind blade profile up to several meters in length.

1.
S.
Lehnhoff
,
A.
Gómez
, and
J. R.
Seume
, “
Full-scale deformation measurements of a wind turbine rotor in comparison with aeroelastic simulations
,”
Wind Energy Sci.
5
,
1411
1423
(
2020
).
2.
H.
Ullah
,
K.
Alam
,
M.
Iqbal
,
A.
Husain
, and
V. V.
Silberschmidt
, “
Simulation of buckling-driven progressive damage in composite wind turbine blade under extreme wind loads
,”
Eng. Fail. Anal.
140
,
106574
(
2022
).
3.
C.
Muyan
and
D.
Coker
, “
Finite element simulations for investigating the strength characteristics of a 5m composite wind turbine blade
,”
Wind Energy Sci.
5
,
1339
1358
(
2020
).
4.
D.
Cekus
,
R.
Gnatowska
,
P.
Kwiatoń
, and
M.
Šofer
, “
Simulation research of a wind turbine using solidworks software
,”
J. Phys.: Conf. Ser.
1398
,
012001
(
2019
).
5.
M.
Civera
and
C.
Surace
, “
Non-destructive techniques for the condition and structural health monitoring of wind turbines: A literature review of the last 20 years
,”
Sensors
22
,
1627
(
2022
).
6.
G.
Castillo
,
V. I.
Moreno
,
E.
Román
,
M.
Campos
,
M.
Avendaño
, and
I.
Aguilar
, “
3d reconstruction of aerodynamic airfoils using computer stereo vision
,” in
Proceedings of Optical Manufacturing and Testing XIV
,
California
,
2022
.
7.
Q.
Li
,
X.
Huang
, and
S.
Li
, “
A laser scanning posture optimization method to reduce the measurement uncertainty of large complex surface parts
,”
Meas. Sci. Technol.
30
,
105203
(
2019
).
8.
A. U.
Dilek
,
A. D.
Oguz
,
F.
Satis
,
Y. D.
Gokdel
, and
M.
Ozbek
, “
Condition monitoring of wind turbine blades and tower via an automated laser scanning system
,”
Eng. Struct.
189
,
25
34
(
2019
).
9.
S.
Hwang
,
Y. K.
An
,
J.
Yang
, and
H.
Sohn
, “
Remote inspection of internal delamination in wind turbine blades using continuous line laser scanning thermography
,”
Int. J. Precis. Eng. Manuf. Green Technol.
7
,
699
712
(
2020
).
10.
Y.
Chen
and
D. T.
Griffith
, “
Experimental and numerical full-field displacement and strain characterization of wind turbine blade using a 3D scanning laser Doppler vibrometer
,”
Opt. Laser Technol.
158
,
108869
(
2023
).
11.
Y.
Chen
,
A. S.
Escalera Mendoza
, and
D.
T.
Griffith
, “
Experimental dynamic characterization of both surfaces of structures using 3D scanning laser Doppler vibrometer
,”
Exp. Tech.
47
,
989
1006
(
2023
).
12.
V. I.
Moreno
,
O.
Flores
,
E.
Román
,
M.
Campos
,
E.
Campos
,
J. R.
Dorrego
,
Q.
Hernandez
,
J. A.
Franco
,
A. J.
Perea
, and
A. A.
García
, “
Vibration measurement using laser triangulation for applications in wind turbine blades
,”
Symmetry
13
,
1017
(
2021
).
13.
R.
Wu
,
D.
Zhang
,
Q.
Yu
,
Y.
Jiang
, and
D.
Arola
, “
Health monitoring of wind turbine blades in operation using three-dimensional digital image correlation
,”
Mech. Syst. Signal Process.
130
,
470
483
(
2019
).
14.
A.
Khadka
,
Y.
Dong
, and
J.
Baqersad
, “
Structural health monitoring of wind turbines using a digital image correlation system on a UAV
,” in
Proceedings of Rotating Machinery, Optical Methods & Scanning LDV Methods
,
Cham
,
2019
.
15.
J.
Curt
,
M.
Capaldo
,
F.
Hild
, and
S.
Roux
, “
Modal analysis of a wind turbine tower by digital image correlation
,”
J. Phys.: Conf. Ser.
1618
,
022002
(
2020
).
16.
C. H. L.
Chan
,
Q.
Wang
,
R.
Holden
,
S.
Huang
, and
W.
Zhao
, “
Optimal number of control points for fitting b-splines in wind turbine blade measurement
,”
Int. J. Precis. Eng. Manuf.
20
,
1507
1517
(
2019
).
17.
Z.
Huang
,
P.
Wei
,
C.
Li
,
H.
Wang
, and
J.
Wang
, “
Aero-engine blade profile reconstruction based on adaptive step size bat algorithm and visualization of machining error
,”
Proc. Inst. Mech. Eng., Part C
234
,
49
65
(
2020
).
18.
V. I.
Moreno
,
E.
Román
,
E.
Torres
,
J. R.
Dorrego
,
M.
Avendaño
,
M.
Campos
, and
S.
Sánchez
, “
Measurement of quality test of aerodynamic profiles in wind turbine blades using laser triangulation technique
,”
Energy Sci Eng.
7
,
2180
2192
(
2019
).
19.
X.
Li
and
Z.
Shi
, “
A form-free and high-precision metrological method for the twist of aeroengine blade
,”
Appl. Sci.
10
,
4130
(
2020
).
20.
See http://www.airfoiltools.com/ for “
Airfoils Database
” (accessed May 12, 2023).
21.
K. J.
Standish
and
C. P.
Van Dam
, “
Aerodynamic analysis of blunt trailing edge airfoils
,”
J. Sol. Energy Eng.
125
,
479
487
(
2003
).
22.
See https://web.mit.edu/drela/Public/web/xfoil/ for “
XFOIL Software
” (accessed May 13, 2023).
You do not currently have access to this content.