Some agro-industrial wastes are currently untreated, resulting in an increase in greenhouse gas emissions. Therefore, in relation to the pollution generated by fossil fuels, the study of the obtained fuels from agro-industrial and forestry residues has been promoted. Rice is a basic product for several families in the world, and its residue is a component that has enormous potential in Colombia due to its consumption. The objective of the present study is to conduct an exergoeconomic evaluation of the production of fuel from rice husks as agro-industrial waste by means of the slow and fast pyrolysis process. Using simulators like Aspen Plus, the simulation of the two processes was carried up, implementing a rigorous kinetic model. The yield values were validated with data from the literature, obtaining values of 42.3% and 41.4% for slow and fast pyrolysis, respectively, for pyrolytic oil. The total investment cost of the process is 2146.45 kUSD. According to the thermodynamic parameters of the simulator, an exergy analysis was conducted for the two processes. Overall exergy percentages of 73.84% and 78.19% were obtained for the slow and fast pyrolysis, respectively. The economic and exergy analysis was coupled to implement a specific exergy costing. The exergoeconomics factors obtained values of 72.21% and 76.78%, for the slow and fast pyrolysis reactors, respectively. The contribution of the present research is related to the rigorous kinetic model, in addition to its implementation in slow pyrolysis, involved in the exergoeconomic study of biomass pyrolysis processes.

1.
Aasadnia
,
M.
,
Mehrpooya
,
M.
, and
Ghorbani
,
B.
, “
A novel integrated structure for hydrogen purification using the cryogenic method
,”
J. Cleaner Prod.
278
,
123872
(
2021
).
2.
Adeniyi
,
A. G.
and
Ighalo
,
J. O.
, “
Computer-aided modeling of thermochemical conversion processes for environmental waste management
,” in
Handbook Environmental Materials Management
(
Springer
,
Cham
,
2020
).
3.
Aghbashlo
,
M.
,
Khounani
,
Z.
,
Hosseinzadeh-Bandbafha
,
H.
,
Gupta
,
V. K.
,
Amiri
,
H.
,
Lam
,
S. S.
,
Morosuk
,
T.
, and
Tabatabaei
,
M.
, “
Exergoenvironmental analysis of bioenergy systems: A comprehensive review
,”
Renewable Sustainable Energy Rev.
149
,
111399
(
2021
).
4.
Ahmadi
,
P.
and
Dincer
,
I.
, “
1.8 Exergoeconomics
,”
Compr. Energy Syst.
1
,
340
376
(
2018
).
5.
Ayala-Ruíz
,
N.
,
Malagón-Romero
,
D. H.
, and
Milquez-Sanabria
,
H. A.
, “
Exergoeconomic evaluation of a banana waste pyrolysis plant for biofuel production
,”
J. Cleaner Prod.
359
,
132108
(
2022
).
6.
Caudle
,
B. H.
,
Gorensek
,
M. B.
, and
Chen
,
C. C.
, “
A rigorous process modeling methodology for biomass fast pyrolysis with an entrained‐flow reactor
,”
J. Adv. Manuf. Process.
2
(
1
),
e10031
(
2020
).
7.
Caudle
,
B.
,
Brandão
,
V. D.
,
Gorensek
,
M. B.
, and
Chen
,
C. C.
, “
Process model-based validation of the intensification of biomass fast pyrolysis in a fluidized bed via autothermal operation
,”
ACS Sustainable Chem. Eng.
10
(
48
),
15926
15938
(
2022
).
8.
Chen
,
D.
,
Cen
,
K.
,
Zhuang
,
X.
,
Gan
,
Z.
,
Zhou
,
J.
,
Zhang
,
Y.
, and
Zhang
,
H.
, “
Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil
,”
Combust. Flame
242
,
112142
(
2022
).
9.
Chung
,
N. H.
,
Van Anh
,
N. T.
,
Duong
,
T. T. T.
,
Truyen
,
D. N.
,
Nghia
,
N. H.
, and
Zenitova
,
L. A.
, “
Rice husk integrated biochemical refinery for the production of nano- and bioproducts
,”
Process Biochem.
121
,
647
655
(
2022
).
10.
Colombia Republic Bank, “La Junta Directiva del Banco de la República decidió por unanimidad incrementar en 25 puntos básicos (pb) la tasa de interés de política monetaria llevándola a 13%,” available at
https://www.banrep.gov.co/es/noticias/jdbrc-decidio-unanimidad-incrementar-25-pb (
2023
).
11.
DANE
, see https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-arroz-mecanizado for “
Encuesta nacional de arroz mecanizado (ENAM);
” accessed 4 April
2023
.
12.
Dar
,
A. A.
,
Hameed
,
J.
,
Huo
,
C.
,
Sarfraz
,
M.
,
Albasher
,
G.
,
Wang
,
C.
, and
Nawaz
,
A.
, “
Recent optimization and panelizing measures for green energy projects; insights into CO2 emission influencing to circular economy
,”
Fuel
314
,
123094
(
2022
).
13.
Debiagi
,
P. E. A.
,
Pecchi
,
C.
,
Gentile
,
G.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
, “
Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis
,”
Energy Fuels
29
(
10
),
6544
6555
(
2015
).
14.
Enel
, see https://www.enel.com.co/content/dam/enel-co/espa%C3%B1ol/personas/1-17-1/2023/tarifario-febrero-2023.pdf for “
Tarifas de energía eléctrica
;” accessed 24 April
2023
.
15.
Production of Biofuels and Chemicals with Pyrolysis
, edited by
Z.
Fang
,
R. L.
Smith
, and
L.
Xu
(
Springer
,
2020
).
16.
Gautam
,
N.
and
Chaurasia
,
A.
, “
Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process
,”
Energy
190
,
116434
(
2020
).
17.
Giudicianni
,
P.
,
Gargiulo
,
V.
,
Grottola
,
C. M.
,
Alfè
,
M.
,
Ferreiro
,
A. I.
,
Mendes
,
M. A. A.
,
Fagnano
,
M.
, and
Ragucci
,
R.
, “
Inherent metal elements in biomass pyrolysis: A review
,”
Energy Fuels
35
(
7
),
5407
5478
(
2021
).
18.
Goodman
,
B. A.
, “
Utilization of waste straw and husks from rice production: A review
,”
J. Bioresour. Bioprod.
5
(
3
),
143
162
(
2020
).
19.
Gouws
,
S. M.
,
Carrier
,
M.
,
Bunt
,
J. R.
, and
Neomagus
,
H. W.
, “
Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation
,”
Renewable Sustainable Energy Rev.
135
,
110189
(
2021
).
20.
Hanchate
,
N.
,
Ramani
,
S.
,
Mathpati
,
C. S.
, and
Dalvi
,
V. H.
, “
Biomass gasification using dual fluidized bed gasification systems: A review
,”
J. Cleaner Prod.
280
,
123148
(
2021
).
21.
Hoang
,
A. T.
,
Ong
,
H. C.
,
Fattah
,
I. R.
,
Chong
,
C. T.
,
Cheng
,
C. K.
,
Sakthivel
,
R.
, and
Ok
,
Y. S.
, “
Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability
,”
Fuel Process. Technol.
223
,
106997
(
2021
).
22.
Hu
,
B.
,
Zhang
,
Z. X.
,
Xie
,
W. L.
,
Liu
,
J.
,
Li
,
Y.
,
Zhang
,
W. M.
,
Fu
,
H.
, and
Lu
,
Q.
, “
Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds
,”
Fuel Process. Technol.
237
,
107465
(
2022
).
23.
Jaroenkhasemmeesuk
,
C.
,
Tippayawong
,
N.
,
Shimpalee
,
S.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
, “
Improved simulation of lignocellulosic biomass pyrolysis plant using chemical kinetics in Aspen Plus® and comparison with experiments
,”
Alexandria Eng. J.
63
,
199
209
(
2023
).
24.
Kaczor
,
Z.
,
Buliński
,
Z.
, and
Werle
,
S.
, “
Modelling approaches to waste biomass pyrolysis: A review
,”
Renewable Energy
159
,
427
443
(
2020
).
25.
Kohl
,
T.
,
Teles
,
M.
,
Melin
,
K.
,
Laukkanen
,
T.
,
Järvinen
,
M.
,
Park
,
S. W.
, and
Guidici
,
R.
, “
Exergoeconomic assessment of CHP-integrated biomass upgrading
,”
Appl. Energy
156
,
290
305
(
2015
).
26.
Li
,
P.
,
Shi
,
X.
,
Wang
,
X.
,
Song
,
J.
,
Fang
,
S.
,
Bai
,
J.
,
Zhang
,
G.
,
Chang
,
C.
, and
Pang
,
S.
, “
Bio-oil from biomass fast pyrolysis: Yields, related properties and energy consumption analysis of the pyrolysis system
,”
J. Cleaner Prod.
328
,
129613
(
2021
).
27.
Li
,
X.
,
Wang
,
F.
,
Al-Razgan
,
M.
,
Awwad
,
E. M.
,
Abduvaxitovna
,
S. Z.
,
Li
,
Z.
, and
Li
,
J.
, “
Race to environmental sustainability: Can structural change, economic expansion and natural resource consumption effect environmental sustainability? A novel dynamic ARDL simulations approach
,”
Resour. Policy
86
,
104044
(
2023
).
28.
Liang
,
J.
,
Shan
,
G.
, and
Sun
,
Y.
, “
Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts
,”
Renewable Sustainable Energy Rev.
139
,
110707
(
2021
).
29.
Liu
,
Z. K.
, “
Computational thermodynamics and its applications
,”
Acta Mater.
200
,
745
792
(
2020
).
30.
Liu
,
L.
,
Tang
,
Y.
, and
Liu
,
D.
, “
Investigation of future low-carbon and zero-carbon fuels for marine engines from the view of thermal efficiency
,”
Energy Rep.
8
,
6150
6160
(
2022a
).
31.
Liu
,
L.
,
Wu
,
Y.
,
Wang
,
Y.
,
Wu
,
J.
, and
Fu
,
S.
, “
Exploration of environmentally friendly marine power technology-ammonia/diesel stratified injection
,”
J. Cleaner Prod.
380
,
135014
(
2022b
).
32.
Lv
,
Q.
,
Yue
,
H.
,
Xu
,
Q.
,
Zhang
,
C.
, and
Zhang
,
R.
, “
Quantifying the exergetic performance of bio-fuel production process including fast pyrolysis and bio-oil hydrodeoxygenation
,”
J. Renewable Sustainable Energy
10
(
4
),
043107
(
2018
).
33.
Maqsood
,
T.
,
Dai
,
J.
,
Zhang
,
Y.
,
Guang
,
M.
, and
Li
,
B.
, “
Pyrolysis of plastic species: A review of resources and products
,”
J. Anal. Appl. Pyrolysis
159
,
105295
(
2021
).
34.
Mehrpooya
,
M.
,
Mousavi
,
S. A.
,
Asadnia
,
M.
,
Zaitsev
,
A.
, and
Sanavbarov
,
R.
, “
Conceptual design and evaluation of an innovative hydrogen purification process applying diffusion-absorption refrigeration cycle (exergoeconomic and exergy analyses)
,”
J. Cleaner Prod.
316
,
128271
(
2021
).
35.
Morseletto
,
P.
, “
Targets for a circular economy
,”
Resour., Conserv. Recycl.
153
,
104553
(
2020
).
36.
Mousavi
,
S. A.
and
Mehrpooya
,
M.
, “
A comprehensive exergy-based evaluation on cascade absorption-compression refrigeration system for low temperature applications-exergy, exergoeconomic, and exergoenvironmental assessments
,”
J. Cleaner Prod.
246
,
119005
(
2020
).
37.
Nakyai
,
T.
,
Patcharavorachot
,
Y.
,
Arpornwichanop
,
A.
, and
Saebea
,
D.
, “
Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization
,”
Energy
209
,
118332
(
2020
).
38.
Naqvi
,
S. R.
,
Tariq
,
R.
,
Shahbaz
,
M.
,
Naqvi
,
M.
,
Aslam
,
M.
,
Khan
,
Z.
,
Mackey
,
H.
,
Mckay
,
G.
, and
Al-Ansari
,
T.
, “
Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects
,”
Comput. Chem. Eng.
150
,
107325
(
2021
).
39.
Ortiz
,
F. J. G.
, “
Techno-economic assessment of supercritical processes for biofuel production
,”
J. Supercrit. Fluids
160
,
104788
(
2020
).
40.
Peters
,
J. F.
,
Petrakopoulou
,
F.
, and
Dufour
,
J.
, “
Exergetic analysis of a fast pyrolysis process for bio-oil production
,”
Fuel Process. Technol.
119
,
245
255
(
2014
).
41.
Poutanen
,
K. S.
,
Kårlund
,
A. O.
,
Gómez-Gallego
,
C.
,
Johansson
,
D. P.
,
Scheers
,
N. M.
,
Marklinder
,
I. M.
,
Eriksen
,
A. K.
,
Silventoinen
,
P. C.
,
Nordlund
,
E.
,
Sozer
,
N.
,
Hanhineva
,
K. J.
,
Kolehmainen
,
M.
, and
Landberg
,
R.
, “
Grains—A major source of sustainable protein for health
,”
Nutr. Rev.
80
(
6
),
1648
1663
(
2022
).
42.
Raymundo
,
L. M.
,
Espindola
,
J. S.
,
Borges
,
F. C.
,
Lazzari
,
E.
,
Trierweiler
,
J. O.
, and
Trierweiler
,
L. F.
, “
Continuous fast pyrolysis of rice husk in a fluidized bed reactor with high feed rates
,”
Chem. Eng. Commun.
208
,
1553
(
2020
).
43.
Safarian
,
S.
,
Rydén
,
M.
, and
Janssen
,
M.
, “
Development and comparison of thermodynamic equilibrium and kinetic approaches for biomass pyrolysis modeling
,”
Energies
15
(
11
),
3999
(
2022
).
44.
Salisu
,
J.
,
Gao
,
N.
, and
Quan
,
C.
, “
Techno-economic assessment of co-gasification of rice husk and plastic waste as an off-grid power source for small scale rice milling—An Aspen Plus model
,”
J. Anal. Appl. Pyrolysis
158
,
105157
(
2021
).
45.
Silva
,
L. A.
,
dos Santos
,
I. F. S.
,
de Oliveira Machado
,
G.
,
Tiago Filho
,
G. L.
, and
Barros
,
R. M.
, “
Rice husk energy production in Brazil: An economic and energy extensive analysis
,”
J. Cleaner Prod.
290
,
125188
(
2021
).
46.
Tahir
,
M. F.
,
Haoyong
,
C.
, and
Guangze
,
H.
, “
A comprehensive review of 4E analysis of thermal power plants, intermittent renewable energy and integrated energy systems
,”
Energy Rep.
7
,
3517
3534
(
2021
).
47.
Téllez
,
J. F.
,
Silva
,
M. P.
,
Simister
,
R.
,
Gomez
,
L. D.
,
Fuertes
,
V. C.
,
De Paoli
,
J. M.
, and
Moyano
,
E. L.
, “
Fast pyrolysis of rice husk under vacuum conditions to produce levoglucosan
,”
J. Anal. Appl. Pyrolysis
156
,
105105
(
2021
).
48.
The University of Manchester
, see https://personalpages.manchester.ac.uk/staff/tom.rodgers/Interactive_graphs/CEPCI.html?reactors/CEPCI/index.html for “
Chemical engineering plant cost index
;” accessed 27 April
2023
.
49.
Torres-Sciancalepore
,
R.
,
Fernandez
,
A.
,
Asensio
,
D.
,
Riveros
,
M.
,
Fabani
,
M. P.
,
Fouga
,
G.
,
Rodriguez
,
R.
, and
Mazza
,
G.
, “
Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds
,”
Energy Convers. Manage.
252
,
115076
(
2022
).
50.
Vieira
,
F. R.
,
Luna
,
C. M. R.
,
Arce
,
G. L.
, and
Ávila
,
I.
, “
Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk
,”
Biomass Bioenergy
132
,
105412
(
2020
).
51.
Vivekh
,
P.
,
Bui
,
D. T.
,
Islam
,
M. R.
,
Zaw
,
K.
, and
Chua
,
K. J.
, “
Experimental performance evaluation of desiccant coated heat exchangers from a combined first and second law of thermodynamics perspective
,”
Energy Convers. Manage.
207
,
112518
(
2020
).
52.
Vuppaladadiyam
,
A. K.
,
Vuppaladadiyam
,
S. S. V.
,
Sikarwar
,
V. S.
,
Ahmad
,
E.
,
Pant
,
K. K.
,
Murugavelh
,
S.
,
Pandey
,
A.
,
Bhattacharya
,
S.
,
Sarmah
,
A.
, and
Leu
,
S. Y.
, “
A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges
,”
J. Energy Inst.
108
,
101236
(
2023
).
53.
Wang
,
B.
,
Gupta
,
R.
,
Bei
,
L.
,
Wan
,
Q.
, and
Sun
,
L.
, “
A review on gasification of municipal solid waste (MSW): Syngas production, tar formation, mineral transformation and industrial challenges
,”
Int. J. Hydrogen Energy
48
,
26676
(
2023
).
You do not currently have access to this content.