Forecasting models are often constrained by data availability, and in forecasting solar photovoltaic (PV) output, the literature suggests that solar irradiance contributes the most to solar PV output. The objective of this study is to identify which between the satellite-based and reanalysis solar irradiance data, namely, short wave radiation (SWR) and surface solar radiation downward (SSRD), respectively, is a better alternative to in situ solar irradiance in forecasting solar PV output should the latter become unavailable. Nine seasonal autoregressive integrated moving average with exogenous variables (SARIMAX) models were presented in this study to assess the forecasting performance of each solar irradiance data together with weather parameters. Using only historical data to forecast solar PV output, three seasonal autoregressive integrated moving average (SARIMA) models were run to forecast solar PV output and to compare and validate the efficacy of the SARIMAX models. The analysis was divided into seasons as defined by the Philippine Atmospheric, Geophysical and Astronomical Services Administration: hot dry, rainy, and cool dry. Results show that the use of SSRD is a better alternative than SWR when forecasting solar PV output for the hot dry season and cool dry season. For the hot dry season, SSRD has an root mean square error (RMSE) value of 0.411 kW while SWR has 0.416 kW. For the cool dry season, SSRD has an RMSE value of 0.457 kW while SWR has 0.471 kW. Meanwhile, SWR outperforms SSRD when forecasting solar PV output during the rainy season, with RMSE values at 0.375 and 0.401 kW, respectively.

1.
G.
Wagner
and
M. L.
Weitzman
,
Climate Shock: The Economic Consequences of a Hotter Planet
, Revised edition (
Princeton University Press
,
Princeton
,
2016
).
2.
M.
Paulescu
,
E.
Paulescu
,
P.
Gravila
, and
V.
Badescu
, “
Weather modeling and forecasting of PV systems operation
,” in
Green Energy and Technology
(
Springer London
,
London
,
2013
).
3.
J.
Antonanzas
,
N.
Osorio
,
R.
Escobar
,
R.
Urraca
,
F. J.
Martinez-de-Pison
, and
F.
Antonanzas-Torres
, “
Review of photovoltaic power forecasting
,”
Sol. Energy
136
,
78
111
(
2016
).
4.
U. K.
Das
,
K. S.
Tey
,
M.
Seyedmahmoudian
,
S.
Mekhilef
,
M. Y. I.
Idris
,
W.
Van Deventer
,
B.
Horan
, and
A.
Stojcevski
, “
Forecasting of photovoltaic power generation and model optimization: A review
,”
Renewable Sustainable Energy Rev.
81
,
912
928
(
2018
).
5.
R. H.
Inman
,
H. T. C.
Pedro
, and
C. F. M.
Coimbra
, “
Solar forecasting methods for renewable energy integration
,”
Prog. Energy Combust. Sci.
39
(
6
),
535
576
(
2013
).
6.
M. Q.
Raza
,
M.
Nadarajah
, and
C.
Ekanayake
, “
On recent advances in PV output power forecast
,”
Sol. Energy
136
,
125
144
(
2016
).
7.
S.
Sobri
,
S.
Koohi-Kamali
, and
N. Abd.
Rahim
, “
Solar photovoltaic generation forecasting methods: A review
,”
Energy Convers. Manage.
156
,
459
497
(
2018
).
8.
D.
Yang
,
J.
Kleissl
,
C. A.
Gueymard
,
H. T. C.
Pedro
, and
C. F. M.
Coimbra
, “
History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining
,”
Sol. Energy
168
,
60
101
(
2018
).
9.
M. J.
Mayer
and
G.
Gróf
, “
Extensive comparison of physical models for photovoltaic power forecasting
,”
Appl. Energy
283
,
116239
(
2021
).
10.
P.
Manigandan
,
M. S.
Alam
,
M.
Alharthi
,
U.
Khan
,
K.
Alagirisamy
,
D.
Pachiyappan
, and
A.
Rehman
, “
Forecasting natural gas production and consumption in United States-evidence from SARIMA and SARIMAX models
,”
Energies
14
(
19
),
6021
(
2021
).
11.
G. P.
Papaioannou
,
C.
Dikaiakos
,
A.
Dramountanis
, and
P. G.
Papaioannou
, “
Analysis and modeling for short- to medium-term load forecasting using a hybrid manifold learning principal component model and comparison with classical statistical models (SARIMAX, exponential smoothing) and artificial intelligence models (ANN, SVM): The case of Greek Electricity Market
,”
Energies
9
(
8
),
635
(
2016
).
12.
Ç. B.
Bozlak
and
C. F.
Yaşar
, “
Studies on day-ahead electricity price forecasting: SARIMAX, LSTM and CNN-LSTM with the electrical consumption as an exogenous input
,”
Electr. Power Syst. Res.
(published online
2022
).
13.
C.
McHugh
,
S.
Coleman
,
D.
Kerr
, and
D.
McGlynn
, “
Forecasting day-ahead electricity prices with a SARIMAX model
,” in
2019 IEEE Symposium Series on Computational Intelligence (SSCI)
(
IEEE
,
2019
), pp.
1523
1529
.
14.
M.
Xie
,
C.
Sandels
,
K.
Zhu
, and
L.
Nordström
, “
A seasonal ARIMA model with exogenous variables for Elspot electricity prices in Sweden
,” in
2013 10th International Conference on the European Energy Market (EEM)
(
IEEE
,
2013
), pp.
1
4
.
15.
J.
Au
,
J.
Saldaña
,
B.
Spanswick
, and
J.
Santerre
, “
Forecasting power consumption in Pennsylvania during the COVID-19 pandemic: A SARIMAX model with external COVID-19 and unemployment variables
,”
SMU Data Sci. Rev.
3
(
2
),
6
(
2020
).
16.
N.
Elamin
and
M.
Fukushige
, “
Modeling and forecasting hourly electricity demand by SARIMAX with interactions
,”
Energy
165
,
257
268
(
2018
).
17.
F.
Harrou
,
F.
Kadri
, and
Y.
Sun
,
Forecasting of Photovoltaic Solar Power Production Using LSTM Approach
(
IntechOpen
,
2020
).
18.
A. K.
Gupta
and
R. K.
Singh
, “
Short-term day-ahead photovoltaic output forecasting using PCA-SFLA-GRNN algorithm
,”
Front. Energy Res.
10
,
449
(
2022
).
19.
P.
Pawar
,
N.
Mithulananthan
, and
M. Q.
Raza
, “
Solar PV power forecasting using modified SVR with Gauss–Newton method
,” in
2020 2nd Global Power, Energy and Communication Conference (GPECOM)
(
IEEE
,
2020
), pp.
226
231
.
20.
B.
Kim
,
D.
Suh
,
M.-O.
Otto
, and
J.-S.
Huh
, “
A novel hybrid spatio-temporal forecasting of multisite solar photovoltaic generation
,”
Remote Sens.
13
(
13
),
2605
(
2021
).
21.
R.
Frouin
and
H.
Murakami
, “
Estimating photosynthetically available radiation at the ocean surface from ADEOS-II global imager data
,”
J. Oceanogr.
63
(
3
),
493
503
(
2007
).
22.
H.
Hersbach
,
B.
Bell
,
P.
Berrisford
,
G.
Biavati
,
A.
Horányi
,
J.
Muñoz Sabater
,
J.
Nicolas
,
C.
Peubey
,
R.
Radu
, and
I.
Rozum
,
ERA5 Hourly Data on Single Levels From 1979 to Present
(
Copernicus Climate Change Service
,
2018
), p.
10
.
23.
See https://bagong.pagasa.dost.gov.ph/information/climate-philippines for Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), Climate of the Philippines, accessed October 23,
2022
.
24.
S. I.
Vagropoulos
,
G. I.
Chouliaras
,
E. G.
Kardakos
,
C. K.
Simoglou
, and
A. G.
Bakirtzis
, “
Comparison of SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting
,” in
2016 IEEE International Energy Conference (ENERGYCON)
(
IEEE
,
2016
), pp.
1
6
.
25.
R.
Agarwal
,
V.
Agarwal
,
V.
Singh
, and
P.
Gaur
, “
PV Output forecasting based on weather classification, SVM and ANN
,”
Indian J. Eng. Mater. Sci. (IJEMS)
29
(
2
),
211
(
2022
).
26.
A.
Gholamy
,
V.
Kreinovich
, and
O.
Kosheleva
, “
Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation
,”
Technical Report No. UTEP-CS-18-09
(
2018
).
27.
T.
Alquthami
,
M. A.
Magzoub
, and
A. M.
Osman
, “
A day ahead prediction of solar PV power output using ensemble neural network
,” in
2021 22nd International Middle East Power Systems Conference (MEPCON)
(
IEEE
,
2021
), pp.
20
25
.
28.
A. M.
Alam
,
Nahid-Al-Masood
,
I.
Asif Razee
, and
M.
Zunaed
, “
Solar PV power forecasting using traditional methods and machine learning techniques
,” in
2021 IEEE Kansas Power and Energy Conference (KPEC)
(
IEEE
,
2021
), pp.
1
5
.
29.
A.
El Kounni
,
H.
Radoine
,
H.
Mastouri
,
H.
Bahi
, and
A.
Outzourhit
, “
Solar power output forecasting using Artificial Neural Network
,” in
2021 9th International Renewable and Sustainable Energy Conference (IRSEC)
(
IEEE
,
2021
), pp.
1
7
.
30.
Y.
Essam
,
A. N.
Ahmed
,
R.
Ramli
,
K. W.
Chau
,
M. S.
Idris Ibrahim
,
M.
Sherif
,
A.
Sefelnasr
, and
A.
El-Shafie
, “
Investigating photovoltaic solar power output forecasting using machine learning algorithms
,”
Eng. Appl. Comput. Fluid Mech.
16
(
1
),
2002
2034
(
2022
).
31.
Y.
Jung
,
J.
Jung
,
B.
Kim
, and
S.
Han
, “
Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea
,”
J. Cleaner Prod.
250
,
119476
(
2020
).
32.
J.
Sharma
,
S.
Soni
,
P.
Paliwal
,
S.
Saboor
,
P. K.
Chaurasiya
,
M.
Sharifpur
,
N.
Khalilpoor
, and
A.
Afzal
, “
A novel long term solar photovoltaic power forecasting approach using LSTM with Nadam optimizer: A case study of India
,”
Energy Sci. Eng.
10
(
8
),
2909
2929
(
2022
).
33.
V.
Suresh
,
P.
Janik
,
J.
Rezmer
, and
Z.
Leonowicz
, “
Forecasting solar PV output using convolutional neural networks with a sliding window algorithm
,”
Energies
13
(
3
),
723
(
2020
).
34.
See https://confluence.ecmwf.int/pages/viewpage.action?pageId=133262398 for Copernicus Knowledge Base, “
ERA5: How to calculate wind speed and wind direction from u and v components of the wind?—Copernicus Knowledge Base—ECMWF Confluence Wiki
,”
2022
, accessed January 20, 2023.
35.
O. A.
Alduchov
and
R. E.
Eskridge
, “
Improved magnus form approximation of saturation vapor pressure
,”
J. Appl. Meteorol. Climatol.
35
(
4
),
601
609
(
1996
).
36.
M.
Konstantinou
,
S.
Peratikou
, and
A. G.
Charalambides
, “
Solar photovoltaic forecasting of power output using LSTM networks
,”
Atmosphere
12
(
1
),
124
(
2021
).
37.
D. H.
Vu
,
K. M.
Muttaqi
, and
A. P.
Agalgaonkar
, “
A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables
,”
Appl. Energy
140
,
385
394
(
2015
).
38.
P.
Kennedy
,
A Guide to Econometrics
, 3rd ed. (
MIT Press
,
Cambridge
,
1992
).
39.
C. W. J.
Granger
and
P.
Newbold
, “
Spurious regressions in econometrics
,”
J. Econometrics
2
(
2
),
111
120
(
1974
)..
40.
D. A.
Dickey
and
W. A.
Fuller
, “
Likelihood ratio statistics for autoregressive time series with a unit root
,”
Econometrica
49
(
4
),
1057
1072
(
1981
).
41.
P. C. B.
Phillips
and
P.
Perron
, “
Testing for a unit root in time series regression
,”
Biometrika
75
(
2
),
335
346
(
1988
).
42.
D.
Kwiatkowski
,
P. C. B.
Phillips
,
P.
Schmidt
, and
Y.
Shin
, “
Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?
,”
J. Econometrics
54
(
1
),
159
178
(
1992
).
43.
See https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html#pmdarima-arima-auto-arima for
T. G.
Smith
, “
pmdarima: ARIMA estimators for Python
,” alkaline-ml,
2017
, accessed March 27, 2023.
44.
G. E. P.
Box
and
G. M.
Jenkins
, “
Time series analysis: Forecasting and control
,” in
Holden-Day Series in Time Series Analysis and Digital Processing
(
Holden-Day
,
1970
).
45.
P. J.
Brockwell
and
R. A.
Davis
,
Time Series: Theory and Methods
(
Springer Science & Business Media
,
2009
).
46.
F. J.
Fabozzi
,
S. M.
Focardi
,
S. T.
Rachev
, and
B. G.
Arshanapalli
, “
Model selection criterion: AIC and BIC
,” in
The Basics of Financial Econometrics: Tools, Concepts, and Asset Management Applications
(
John Wiley & Sons, Ltd
.,
2014
), pp.
399
403
.
47.
K. P.
Burnham
and
D. R.
Anderson
,
Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
(
Springer Science & Business Media
,
2003
).
48.
I.
Benitez
,
L.
Gerna
,
J.
Ibañez
,
J.
Principe
, and
F.
De Los Reyes
, “
Use of SARIMAX model for solar PV power output forecasting in Baguio City, Philippines
,” in
2022 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE)
(
IEEE
,
2022
), pp.
1
7
.
You do not currently have access to this content.