Effects of helical-shaped blades on the flow characteristics and power production of finite-length wind farms composed of vertical-axis wind turbines (VAWTs) are studied numerically using large-eddy simulation (LES). Two helical-bladed VAWTs (with opposite blade twist angles) are studied against one straight-bladed VAWT in different array configurations with coarse, intermediate, and tight spacings. Statistical analysis of the LES data shows that the helical-bladed VAWTs can improve the mean power production in the fully developed region of the array by about 4.94 % 7.33 % compared with the corresponding straight-bladed VAWT cases. The helical-bladed VAWTs also cover the azimuth angle more smoothly during the rotation, resulting in about 47.6 % 60.1 % reduction in the temporal fluctuation of the VAWT power output. Using the helical-bladed VAWTs also reduces the fatigue load on the structure by significantly reducing the spanwise bending moment (relative to the bottom base), which may improve the longevity of the VAWT system to reduce the long-term maintenance cost.

1.
S.
Potrč
,
L.
Čuček
,
M.
Martin
, and
Z.
Kravanja
, “
Sustainable renewable energy supply networks optimization—The gradual transition to a renewable energy system within the European Union by 2050
,”
Renewable Sustainable Energy Rev.
146
,
111186
(
2021
).
2.
Global Wind Energy Council, “
Global Wind Report 2022
,”
Report
(
Global Wind Energy Council
,
2022
).
3.
J. F.
Manwell
,
J. G.
McGowan
, and
A. L.
Rogers
,
Wind Energy Explained
, 2nd ed. (
Wiley
,
2009
).
4.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
, and
E.
Bossanyi
,
Wind Energy Handbook
(
Wiley
,
2011
).
5.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary-Layer Meteorol.
174
,
1
59
(
2020
).
6.
J.
Contrell
,
T.
Stehly
,
J.
Johnson
,
J. O.
Roberts
,
Z.
Parker
,
G.
Scott
, and
D.
Heimiller
, “
Analysis of transportation and logistics challenges affecting the deployment of larger wind turbines: Summary of results
,”
Report No. NREL/TP-5000-61063
(
National Renewable Energy Laboratory
,
2014
).
7.
M.
Kinzel
,
Q.
Mulligan
, and
J. O.
Dabiri
, “
Energy exchange in an array of vertical-axis wind turbines
,”
J. Turbul.
13
,
N38
(
2012
).
8.
M.
Casini
, “
Small vertical axis wind turbines for energy efficiency of buildings
,”
J. Clean Energy Technol.
4
,
56
65
(
2016
).
9.
S. H.
Hezaveh
,
E.
Bou-Zeid
,
M. W.
Lohry
, and
L.
Martinelli
, “
Simulation and wake analysis of a single vertical axis wind turbine
,”
Wind Energy
20
,
713
730
(
2017
).
10.
L.
Battisti
,
A.
Brighenti
,
E.
Benini
, and
M. R.
Castelli
, “
Analysis of different blade architectures on small VAWT performance
,”
J. Phys.: Conf. Ser.
753
,
062009
(
2016
).
11.
G.
Brochier
,
P.
Fraunie
,
C.
Beguier
, and
I.
Paraschivoiu
, “
Water channel experiments of dynamic stall on Darrieus wind turbine blades
,”
J. Propul. Power
2
,
445
449
(
1986
).
12.
P.
Bachant
and
M.
Wosnik
, “
Performance and near-wake measurements for a vertical axis turbine at moderate Reynolds number
,” in
Proceedings of the ASME Fluids Engineering Summer Meeting
,
2013
.
13.
D. B.
Araya
and
J. O.
Dabiri
, “
A comparison of wake measurements in motor-driven and flow-driven turbine experiments
,”
Exp. Fluids
56
,
150
(
2015
).
14.
M.
Kinzel
,
D. B.
Araya
, and
J. O.
Dabiri
, “
Turbulence in vertical axis wind turbine canopies
,”
Phys. Fluids
27
,
115102
(
2015
).
15.
D. B.
Araya
and
J. O.
Dabiri
, “
Vertical axis wind turbine in a falling soap film
,”
Phys. Fluids
27
,
091108
(
2016
).
16.
D. B.
Araya
,
T.
Colonius
, and
J. O.
Dabiri
, “
Transition to bluff-body dynamics in the wake of vertical-axis wind turbines
,”
J. Fluid Mech.
813
,
346
381
(
2017
).
17.
S. H.
Hezaveh
,
E.
Bou-Zeid
,
G.
Cortina
,
L.
Martinelli
,
J.
Dabiri
, and
M.
Kinzel
, “
Increasing the power production of vertical-axis wind-turbine farms using synergistic clustering
,”
Boundary-Layer Meteorol.
169
,
275
296
(
2018
).
18.
I. D.
Brownstein
,
N. J.
Wei
, and
J. O.
Dabiri
, “
Aerodynamically interacting vertical-axis wind turbines: Performance enhancement and three-dimensional flow
,”
Energies
12
,
2724
(
2019
).
19.
N. J.
Wei
,
I. D.
Brownstein
,
J. L.
Cardona
,
M. F.
Howland
, and
J. O.
Dabiri
, “
Near-wake structure of full-scale vertical-axis wind turbines
,”
J. Fluid Mech.
914
,
A17
(
2021
).
20.
A.
Alaimo
,
A.
Esposito
,
A.
Messineo
,
C.
Orlando
, and
D.
Tumino
, “
3D CFD analysis of a vertical axis wind turbine
,”
Energies
8
,
3013
3033
(
2015
).
21.
M.
Moghimi
and
H.
Motawej
, “
Developed DMST model for performance analysis and parametric evaluation of Gorlov vertical axis wind turbines
,”
Sustainable Energy Technol. Assess.
37
,
100616
(
2020
).
22.
Q.
Cheng
,
X.
Liu
,
H. S.
Ji
,
K. C.
Kim
, and
B.
Yang
, “
Aerodynamic analysis of a helical vertical axis wind turbine
,”
Energies
10
,
575
(
2017
).
23.
U.
Divakaran
,
A.
Ramesh
,
A.
Mohammad
, and
R. K.
Velamati
, “
Effect of helix angle on the performance of helical vertical axis wind turbine
,”
Energies
14
,
393
(
2021
).
24.
M.
Gharaati
,
S.
Xiao
,
N. J.
Wei
,
L. A.
Martínez-Tossas
,
J. O.
Dabiri
, and
D.
Yang
, “
Large-eddy simulation of helical- and straight-bladed vertical-axis wind turbines in boundary layer turbulence
,”
J. Renewable Sustainable Energy
14
,
053301
(
2022
).
25.
R. B.
Cal
,
J.
Lebrón
,
L.
Castillo
,
H. S.
Kang
, and
C.
Meneveau
, “
Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer
,”
J. Renewable Sustainable Energy
2
,
013106
(
2010
).
26.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
27.
M.
Calaf
,
M. B.
Parlange
, and
C.
Meneveau
, “
Large eddy simulation study of scalar transport in fully developed wind-turbine array boundary layers
,”
Phys. Fluids
23
,
126603
(
2011
).
28.
X.
Yang
,
S.
Kang
, and
F.
Sotiropoulos
, “
Computational study and modeling of turbine spacing effects in infinite aligned wind farms
,”
Phys. Fluids
24
,
115107
(
2012
).
29.
R. J.
Stevens
,
J.
Graham
, and
C.
Meneveau
, “
A concurrent precursor inflow method for Large Eeddy Simulations and applications to finite length wind farms
,”
Renewable Energy
68
,
46
50
(
2014
).
30.
R. J.
Stevens
and
C.
Meneveau
, “
Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms
,”
J. Renewable Sustainable Energy
6
,
043102
(
2014
).
31.
R. J.
Stevens
, “
Dependence of optimal wind turbine spacing on wind farm length
,”
Wind Energy
19
,
651
663
(
2016
).
32.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Large-eddy simulation of offshore wind farm
,”
Phys. Fluids
26
,
025101
(
2014
).
33.
D.
Yang
,
C.
Meneveau
, and
L.
Shen
, “
Effect of downwind swells on offshore wind energy harvesting—A large-eddy simulation study
,”
Renewable Energy
70
,
11
23
(
2014
).
34.
S.
Xiao
and
D.
Yang
, “
Large-eddy simulation-based study of effect of swell-induced pitch motion on wake-flow statistics and power extraction of offshore wind turbines
,”
Energies
12
,
1246
(
2019
).
35.
J. O.
Dabiri
, “
Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays
,”
J. Renewable Sustainable Energy
3
,
043104
(
2011
).
36.
D. B.
Araya
,
A. E.
Craig
,
M.
Kinzel
, and
J. O.
Dabiri
, “
Low-order modeling of wind farm aerodynamics using leaky Rankine bodies
,”
J. Renewable Sustainable Energy
6
,
063118
(
2014
).
37.
S.
Xie
,
C. L.
Archer
,
N.
Ghaisas
, and
C.
Meneveau
, “
Benefits of collocating vertical-axis and horizontal-axis wind turbines in large wind farms
,”
Wind Energy
20
,
45
62
(
2017
).
38.
J. N.
Sørensen
and
W. Z.
Shen
, “
Numerical modeling of wind turbine wakes
,”
J. Fluids Eng.
124
,
393
399
(
2002
).
39.
S.
Shamsoddin
and
F.
Porté-Agel
, “
Large eddy simulation of vertical axis wind turbine wakes
,”
Energies
7
,
890
912
(
2014
).
40.
L. A.
Martínez-Tossas
,
M. J.
Churchfield
, and
S.
Leonardi
, “
Large eddy simulations of the flow past wind turbines: Actuator line and disk modeling
,”
Wind Energy
18
,
1047
1060
(
2015
).
41.
L. A.
Martínez-Tossas
,
M. J.
Churchfield
, and
C.
Meneveau
, “
A highly resolved large-eddy simulation of a wind turbine using an actuator line model with optimal body force projection
,”
J. Phys.: Conf. Ser.
753
,
082014
(
2016
).
42.
L. A.
Martínez Tossas
,
R. J.
Stevens
, and
C.
Meneveau
, “
Wind farm large-eddy simulations on very coarse grid resolutions using an actuator line model
,” AIAA Paper No. 2016-1261,
2016
.
43.
H.
Sarlak
,
T.
Nishino
,
L. A.
Martínez-Tossas
,
C.
Meneveau
, and
J. N.
Sørensen
, “
Assessment of blockage effects on the wake characteristics and power of wind turbines
,”
Renewable Energy
93
,
340
352
(
2016
).
44.
S.
Shamsoddin
and
F.
Porté-Agel
, “
A large-eddy simulation study of vertical axis wind turbine wakes in the atmospheric boundary layer
,”
Energies
9
,
366
(
2016
).
45.
M.
Abkar
and
J. O.
Dabiri
, “
Self-similarity and flow characteristics of vertical-axis wind turbine wakes: An LES study
,”
J. Turbul.
18
,
373
389
(
2017
).
46.
M. J.
Churchfield
,
S.
Schreck
,
L. A.
Martínez-Tossas
,
C.
Meneveau
, and
P. R.
Spalart
, “
An advanced actuator line method for wind energy applications and beyond
,” AIAA Paper No. 2017-1998,
2017
.
47.
V.
Mendoza
and
A.
Goude
, “
Wake flow simulation of a vertical axis wind turbine under the influence of wind shear
,”
J. Phys.: Conf. Ser.
854
,
012031
(
2017
).
48.
V.
Mendoza
,
P.
Bachant
,
C.
Ferreira
, and
A.
Goude
, “
Near-wake flow simulation of a vertical axis turbine using an actuator line model
,”
Wind Energy
22
,
171
188
(
2019
).
49.
V.
Mendoza
,
A.
Chaudhari
, and
A.
Goude
, “
Performance and wake comparison of horizontal and vertical axis wind turbines under varying surface roughness conditions
,”
Wind Energy
22
,
458
472
(
2019
).
50.
See https://lesgo.me.jhu.edu/ for “
LESGO: A parallel pseudo-spectral large-eddy simulation code
.”
51.
D. K.
Lilly
, “
The representation of small-scale turbulence in numerical simulation experiments
,” in
Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences,
1967
.
52.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
53.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
54.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
1765
(
1991
).
55.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
284
(
2000
).
56.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
32
(
2000
).
57.
C.
Meneveau
,
T. S.
Lund
, and
W. H.
Cabot
, “
A Lagrangian dynamic subgrid-scale model of turbulence
,”
J. Fluid Mech.
319
,
353
385
(
1996
).
58.
X.
Yang
and
F.
Sotiropoulos
, “
LES investigation of infinite staggered wind-turbine arrays
,”
J. Phys.: Conf. Ser.
555
,
012109
(
2014
).
59.
C.-H.
Moeng
, “
A large-eddy-simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
41
,
2052
2062
(
1984
).
60.
J.
Albertson
and
M.
Parlange
, “
Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain
,”
Water Resour. Res.
35
,
2121
2132
, https://doi.org/10.1029/1999WR900094 (
1999
).
61.
F. k
Chow
,
R. L.
Street
,
M.
Xue
, and
J. H.
Ferziger
, “
Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow
,”
J. Atmos. Sci.
62
,
2058
2077
(
2005
).
62.
O.
Coceal
,
T. G.
Thomas
,
L. P.
Castro
, and
S. E.
Belcher
, “
Mean flow and turbulence statistics over groups of urban-like cubical obstacles
,”
Boundary-Layer Meteorol.
121
,
491
519
(
2006
).
63.
J. D.
Albertson
, “
Large eddy simulation of land-atmosphere interaction
,” Ph.D. thesis (
University of California
,
Davis
,
1996
).
64.
R. E.
Sheldahl
and
P. C.
Klimas
, “
Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines
,”
Report No. SAND-80-2114
(
Sandia National Labs
,
1981
).
65.
P. R.
Spalart
, “
Direct numerical study of leading-edge contamination
,” in
Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition
,
1988
.
66.
T.
Colonius
, “
Modeling artificial boundary conditions for compressible flow
,”
Annu. Rev. Fluid Mech.
36
,
315
345
(
2004
).
67.
P.
Schlatter
,
N.
Adams
, and
L.
Kleiser
, “
A windowing method for periodic inflow/outflow boundary treatment of non-periodic flows
,”
J. Comput. Phys.
206
,
505
535
(
2005
).
68.
S.
Chester
,
C.
Meneveau
, and
M. B.
Parlange
, “
Modeling turbulent flow over fractal trees with renormalized numerical simulation
,”
J. Comput. Phys.
225
,
427
448
(
2007
).
69.
E.
Bou-Zeid
,
C.
Meneveau
, and
M. B.
Parlange
, “
Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness
,”
Water Resour. Res.
40
,
W02505
, https://doi.org/10.1029/2003WR002475 (
2004
).
70.
J.
Kleissl
,
V.
Kumar
,
C.
Meneveau
, and
M. B.
Parlange
, “
Numerical study of dynamic Smagorinsky models in large-eddy simulation of the atmospheric boundary layer: Validation in stable and unstable conditions
,”
Water Resour. Res.
42
,
W06D10
, https://doi.org/10.1029/2005WR004685 (
2006
).
71.
L. A.
Martínez-Tossas
,
M. J.
Churchfield
, and
C.
Meneveau
, “
Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution
,”
Wind Energy
20
,
1083
1096
(
2017
).
72.
L. P.
Chamorro
and
F.
Porté-Agel
, “
Turbulent flow inside and above a wind farm: A wind-tunnel study
,”
Energies
4
,
1916
1936
(
2011
).
73.
S. P.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
74.
J.
Meyers
and
C.
Meneveau
, “
Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms
,”
J. Fluid Mech.
715
,
335
358
(
2013
).
75.
J.
Meyers
and
C.
Meneveau
, “
Optimal turbine spacing in fully developed wind farm boundary layers
,”
Wind Energy
15
,
305
317
(
2012
).
76.
D. C.
Maniacil
,
A. L.
Frankel
,
G.
Geraci
,
M. L.
Blaylock
, and
M. S.
Eldred
, “
Multilevel uncertainty quantification of a wind turbine large eddy simulation model
,” in
7th European Conference on Computational Fluid Dynamics
,
2018
.
77.
J.
Zhang
and
X.
Zhao
, “
Quantification of parameter uncertainty in wind farm wake modeling
,”
Energy
196
,
117065
(
2020
).
78.
W. J.
McCroskey
, “
The phenomenon of dynamic stall
,”
Report No. 81264
(
NASA
,
1981
).
79.
R.
Gormont
, “
A mathematical model of unsteady aerodynamics and radial flow for application to helicopter rotors
,”
Report No. 72-67
(
Army Air Mobility Research and Development Laboratory
,
1973
).
You do not currently have access to this content.