Rotor redesign approaches have been widely proposed to solve the thrust mismatch issue caused by scaling effects for basin model tests of horizontal axis floating wind turbines (FWTs). However, limited basin model tests utilized the thrust-matched rotor (TMR) to accurately evaluate the aerodynamic loads applying to the vertical axis FWTs. This paper described the detailed design approach of the TMR of floating straight-bladed vertical axis wind turbines (VAWTs) with a rated power of 5.3 MW. First, the AG455 airfoil was selected to replace the NACA0018 airfoil. AG455 airfoil can show a larger lift coefficient and a smaller drag coefficient at low Reynolds number. On this basis, the load distribution match algorithm was used to assign the blade pitch angle and chord length at each section of the blade. This method takes the spanwise load and load change rate of model-scaled blade and full-scaled blade as the constraint conditions. By adopting this method, the rotor thrust can be tailored to match the prototype values across a wide range of tip speed ratios. This design approach proves advantageous in assessing the aerodynamic performance of VAWTs under varying inflow wind speeds and unsteady wind conditions. The redesigned TMR model under low Reynolds number can meet Froude similarity criterion, which is helpful to improve the accuracy of vertical axis FWT model tests in the wave basin.

1.
Y.
Liu
,
S.
Li
,
Q.
Yi
, and
D.
Chen
, “
Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review
,”
Renewable Sustainable Energy Rev.
60
,
433
449
(
2016
).
2.
S.
Wang
,
T.
Moan
, and
Z.
Gao
, “
Methodology for global structural load effect analysis of the semi-submersible hull of floating wind turbines under still water, wind, and wave loads
,”
Mar. Struct.
91
,
103463
(
2023
).
3.
H.
Shin
, “
Model test of the OC3-hywind floating offshore wind turbine
,” in
The 21st International Offshore and Polar Engineering Conference
(
OnePetro
,
2011
).
4.
F. G.
Nielsen
,
T. D.
Hanson
, and
B.
Skaare
, “
Integrated dynamic analysis of floating offshore wind turbines
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
ASME
,
2006
), Vol.
47462
, pp.
671
679
.
5.
J.
Browning
,
J.
Jonkman
,
A.
Robertson
, and
A.
Goupee
, “
Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool
,”
J. Phys.: Conf. Ser.
555
,
012015
(
2014
).
6.
A. J.
Coulling
,
A. J.
Goupee
,
A. N.
Robertson
,
J. M.
Jonkman
, and
H. J.
Dagher
, “
Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data
,”
J. Renewable Sustainable Energy
5
,
023116
(
2013
).
7.
B.
Koo
,
A. J.
Goupee
,
K.
Lambrakos
, and
H. J.
Lim
, “
Model test correlation study for a floating wind turbine on a tension leg platform
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2013
), Vol.
55423
, p.
V008T09A101
.
8.
M.
Hall
,
A.
Goupee
, and
J.
Jonkman
, “
Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests
,”
J. Ocean Eng. Mar. Energy
4
,
1
23
(
2018
).
9.
D.
Roddier
,
C.
Cermelli
, and
A.
Weinstein
, “
Windfloat: A floating foundation for offshore wind turbines–Part I: Design basis and qualification process
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2009
), Vol.
43444
, pp.
845
853
.
10.
J.
Azcona
,
F.
Bouchotrouch
,
M.
González
,
J.
Garciandía
,
X.
Munduate
,
F.
Kelberlau
, and
T. A.
Nygaard
, “
Aerodynamic thrust modelling in wave tank tests of offshore floating wind turbines using a ducted fan
,”
J. Phys.: Conf. Ser.
524
,
012089
(
2014
).
11.
H. R.
Martin
,
R. W.
Kimball
,
A. M.
Viselli
, and
A. J.
Goupee
, “
Methodology for wind/wave basin testing of floating offshore wind turbines
,”
J. Offshore Mech. Arct. Eng.
136
,
020905
(
2014
).
12.
K.
Muller
,
F.
Sandner
,
H.
Bredmose
,
J.
Azcona
,
A.
Manjock
, and
R.
Pereira
, “
Improved tank test procedures for scaled floating offshore wind turbines
,” in
International Wind Engineering Conference (IWEC)
,
2014
.
13.
F.
Adam
,
T.
Myland
,
F.
Dahlhaus
, and
J.
Großmann
, “
Scale tests of the GICON®-TLP for wind turbines
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2014
), Vol.
45530
, p.
V09AT09A011
.
14.
F.
Duan
,
Z.
Hu
,
G.
Liu
, and
J.
Wang
, “
Experimental comparisons of dynamic properties of floating wind turbine systems based on two different rotor concepts
,”
Appl. Ocean Res.
58
,
266
280
(
2016
).
15.
E. J.
Ridder
,
W.
Otto
,
G. J.
Zondervan
,
F.
Huijs
, and
G.
Vaz
, “
Development of a scaled-down floating wind turbine for offshore basin testing
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2014
), Vol.
45530
, p.
V09AT09A027
.
16.
A. J.
Goupee
,
M. J.
Fowler
,
R. W.
Kimball
,
J.
Helder
, and
E. J.
de Ridder
, “
Additional wind/wave basin testing of the DeepCwind semi-submersible with a performance-matched wind turbine
,” in
International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2014
), Vol.
45547
, p.
V09BT09A026
.
17.
W.
Yu
,
F.
Lemmer
,
H.
Bredmose
,
M.
Borg
,
A.
Pegalajar-Jurado
,
R. F.
Mikkelsen
,
T. S.
Larsen
,
T.
Fjelstrup
,
A. K.
Lomholt
,
L.
Boehm
et al, “
The triple spar campaign: Implementation and test of a blade pitch controller on a scaled floating wind turbine model
,”
Energy Procedia
137
,
323
338
(
2017
).
18.
H.
Bredmose
,
F.
Lemmer
,
M.
Borg
,
A.
Pegalajar-Jurado
,
R. F.
Mikkelsen
,
T. S.
Larsen
,
T.
Fjelstrup
,
W.
Yu
,
A. K.
Lomholt
,
L.
Boehm
et al, “
The triple spar campaign: Model tests of a 10MW floating wind turbine with waves, wind and pitch control
,”
Energy Procedia
137
,
58
76
(
2017
).
19.
Y.
Zhao
,
X.
She
,
Y.
He
,
J.
Yang
,
T.
Peng
, and
Y.
Kou
, “
Experimental study on new multi-column tension-leg-type floating wind turbine
,”
China Ocean Eng.
32
,
123
131
(
2018
).
20.
L.
Liu
,
Y.
Guo
,
H.
Zhao
, and
Y.
Tang
, “
Motions of a 5MW floating VAWT evaluated by numerical simulations and model tests
,”
Ocean Eng.
144
,
21
34
(
2017
).
21.
Y.
Zhang
,
J.
Zhao
,
B.
Grabrick
,
B.
Jacobson
,
A.
Nelson
, and
J.
Otte
, “
Dynamic response of three floaters supporting vertical axis wind turbines due to wind excitation
,”
J. Fluids Struct.
80
,
316
331
(
2018
).
22.
T.
Ikoma
,
L.
Tan
,
S.
Moritsu
,
Y.
Aida
, and
K.
Masuda
, “
Motion characteristics of a barge-type floating vertical-axis wind turbine with moonpools
,”
Ocean Eng.
230
,
109006
(
2021
).
23.
K.
Rajeswari
and
S.
Nallayarasu
, “
Experimental and numerical investigation on the suitability of semi-submersible floaters to support vertical axis wind turbine
,”
Ships Offshore Struct.
17
,
1743
1754
(
2021
).
24.
H.
Zheng
,
X.
Zheng
,
Y.
Lei
,
D.
Li
, and
X.
Ci
, “
Experimental validation on the dynamic response of a novel floater uniting a vertical-axis wind turbine with a steel fishing cage
,”
Ocean Eng.
243
,
110257
(
2022
).
25.
W.
Deng
,
Y.
Guo
,
L.
Liu
,
Y.
Li
,
Y.
Jiang
, and
P.
Xie
, “
Dynamic response analysis of a floating vertical axis wind turbine with helical blades based on the model test
,”
Ocean Eng.
273
,
113930
(
2023
).
26.
Z.
Cheng
,
H. A.
Madsen
,
Z.
Gao
, and
T.
Moan
, “
Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines
,”
Renewable Energy
101
,
1285
1298
(
2017
).
27.
H. R.
Martin
, “
Development of a scale model wind turbine for testing of offshore floating wind turbine systems
,”
Master's thesis
(
The University of Maine
,
2011
).
28.
H.
Madsen
,
T.
Larsen
,
U.
Paulsen
, and
L.
Vita
, “
Implementation of the actuator cylinder flow model in the HAWC2 code for aeroelastic simulations on vertical axis wind turbines
,” AIAA Paper No. 2013-0913,
2013
.
29.
C.
Kress
,
N.
Chokani
,
R. S.
Abhari
,
T.
Hashimoto
, and
M.
Saeki
, “
Impact of flow inclination on downwind turbine loads and power
,”
J. Phys.: Conf. Ser.
753
,
022011
(
2016
).
30.
K.
Sivalingam
,
S.
Martin
, and
A.
Singapore Wala
, “
Numerical validation of floating offshore wind turbine scaled rotors for surge motion
,”
Energies
11
,
2578
(
2018
).
31.
M.
Miller
,
S.
Duvvuri
,
I.
Brownstein
,
M.
Lee
,
J.
Dabiri
, and
M.
Hultmar
, “
Vertical-axis wind turbine experiments at full dynamic similarity
,”
J. Fluid Mech.
844
,
707
720
(
2018
).
32.
W.
Du
,
Y.
Zhao
,
M.
Wang
,
Y.
He
, and
R.
Jiang
, “
Design and analysis of a model wind turbine blade for wave basin test of floating wind turbines
,”
Renewable Energy
97
,
414
421
(
2016
).
33.
L.
Meng
,
Y. P.
He
,
Y. S.
Zhao
,
T.
Peng
, and
J.
Yang
, “
Experimental study on aerodynamic characteristics of the model wind rotor system and on characterization of a wind generation system
,”
China Ocean Eng.
33
,
137
147
(
2019
).
34.
I.
Bayati
,
M.
Belloli
,
L.
Bernini
,
R.
Mikkelsen
, and
A.
Zasso
, “
On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model
,”
J. Phys.: Conf. Ser.
753
,
022028
(
2016
).
35.
B.
Wen
,
X.
Tian
,
X.
Dong
,
Z.
Li
,
Z.
Peng
,
W.
Zhang
, and
K.
Wei
, “
Design approaches of performance-scaled rotor for wave basin model tests of floating wind turbines
,”
Renewable Energy
148
,
573
584
(
2019
).
You do not currently have access to this content.