Low-fidelity wake models are used for wind farm design and control optimization. To generalize to a wind farm model, individually modeled wakes are commonly superimposed using approximate superposition models. Wake models parameterize atmospheric and wake turbulence, introducing unknown model parameters that historically are tuned with idealized simulation or experimental data and neglect uncertainty. We calibrate and estimate the uncertainty of the parameters in a Gaussian wake model using Markov chain Monte Carlo (MCMC) for various wake superposition methods. Posterior distributions of the uncertain parameters are generated using power production data from large eddy simulations and a utility-scale wake steering field experiment. The posteriors for the wake expansion coefficient are sensitive to the choice of superposition method, with relative differences in the means and standard deviations on the order of 100%. This sensitivity illustrates the role of superposition methods in wake modeling error. We compare these data-driven parameter estimates to estimates derived from a standard turbulence-intensity based model as a baseline. To assess predictive accuracy, we calibrate the data-driven parameter estimates with a training dataset for yaw-aligned operation. Using a Monte Carlo approach, we then generate predicted distributions of turbine power production and evaluate against a hold-out test dataset for yaw-misaligned operation. For the cases tested, the MCMC-calibrated parameters reduce the total error of the power predictions by roughly 50% compared to the deterministic empirical model predictions. An additional benefit of the data-driven parameter estimation is the quantification of uncertainty, which enables physically quantified confidence intervals of wake model predictions.

1.
P.
Veers
,
K.
Dykes
,
E.
Lantz
,
S.
Barth
,
C. L.
Bottasso
,
O.
Carlson
,
A.
Clifton
,
J.
Green
,
P.
Green
,
H.
Holttinen
,
D.
Laird
,
V.
Lehtomäki
,
J. K.
Lundquist
,
J.
Manwell
,
M.
Marquis
,
C.
Meneveau
,
P.
Moriarty
,
X.
Munduate
,
M.
Muskulus
,
J.
Naughton
,
L.
Pao
,
J.
Paquette
,
J.
Peinke
,
A.
Robertson
,
J.
Sanz Rodrigo
,
A. M.
Sempreviva
,
J. C.
Smith
,
A.
Tuohy
, and
R.
Wiser
, “
Grand challenges in the science of wind energy
,”
Science
366
,
eaau2027
(
2019
).
2.
International Energy Agency
,
Global Energy Review 2021
(
International Energy Agency
,
Paris
,
2021
), https://www.iea.org/reports/global-energy-review-2021.
3.
J.
Meyers
and
C.
Meneveau
, “
Optimal turbine spacing in fully developed wind farm boundary layers: Optimal turbine spacing in wind farm boundary layers
,”
Wind Energy
15
,
305
317
(
2012
).
4.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J. G.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E. S.
Politis
, and
P. K.
Chaviaropoulos
, “
Modelling and measuring flow and wind turbine wakes in large wind farms offshore
,”
Wind Energy
12
,
431
444
(
2009
).
5.
H.
Sun
,
X.
Gao
, and
H.
Yang
, “
A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect
,”
Renewable Sustainable Energy Rev.
132
,
110042
(
2020
).
6.
B.
Lange
,
H.-P.
Waldl
,
A. G.
Guerrero
,
D.
Heinemann
, and
R. J.
Barthelmie
, “
Modelling of offshore wind turbine wakes with the wind farm program FLaP
,”
Wind Energy
6
,
87
104
(
2003
).
7.
F.
Porté-Agel
,
Y.-T.
Wu
, and
C.-H.
Chen
, “
A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm
,”
Energies
6
,
5297
5313
(
2013
).
8.
A. S.
Ghate
and
S. K.
Lele
, “
A modeling framework for wind farm analysis: Wind turbine wake interactions
,” AIAA Paper No. AIAA 2015-0725,
2015
.
9.
Y.-T.
Wu
and
F.
Porté-Agel
, “
Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm
,”
Renewable Energy
75
,
945
955
(
2015
).
10.
R.
Shakoor
,
M. Y.
Hassan
,
A.
Raheem
, and
Y.-K.
Wu
, “
Wake effect modeling: A review of wind farm layout optimization using Jensen's model
,”
Renewable Sustainable Energy Rev.
58
,
1048
1059
(
2016
).
11.
C.
Meneveau
, “
Big wind power: Seven questions for turbulence research
,”
J. Turbul.
20
,
2
20
(
2019
).
12.
L.
Parada
,
C.
Herrera
,
P.
Flores
, and
V.
Parada
, “
Wind farm layout optimization using a Gaussian-based wake model
,”
Renewable Energy
107
,
531
541
(
2017
).
13.
M. F.
Howland
,
S. K.
Lele
, and
J. O.
Dabiri
, “
Wind farm power optimization through wake steering
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
14495
14500
(
2019
).
14.
A. P. J.
Stanley
and
A.
Ning
, “
Massive simplification of the wind farm layout optimization problem
,”
Wind Energy Sci.
4
,
663
676
(
2019
).
15.
P.
Fleming
,
J.
King
,
K.
Dykes
,
E.
Simley
,
J.
Roadman
,
A.
Scholbrock
,
P.
Murphy
,
J. K.
Lundquist
,
P.
Moriarty
,
K.
Fleming
et al, “
Initial results from a field campaign of wake steering applied at a commercial wind farm—Part 1
,”
Wind Energy Sci.
4
,
273
285
(
2019
).
16.
M. F.
Howland
,
J. B.
Quesada
,
J. J. P.
Martínez
,
F. P.
Larrañaga
,
N.
Yadav
,
J. S.
Chawla
,
V.
Sivaram
, and
J. O.
Dabiri
, “
Collective wind farm operation based on a predictive model increases utility-scale energy production
,”
Nat. Energy
7
,
818
827
(
2022
).
17.
N. O.
Jensen
,
A Note on Wind Generator Interaction
(
Risø National Laboratory
,
1983
).
18.
S.
Frandsen
,
R.
Barthelmie
,
S.
Pryor
,
O.
Rathmann
,
S.
Larsen
,
J.
Højstrup
, and
M.
Thøgersen
, “
Analytical modelling of wind speed deficit in large offshore wind farms
,”
Wind Energy
9
,
39
53
(
2006
).
19.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new analytical model for wind-turbine wakes
,”
Renewable Energy
70
,
116
123
(
2014
).
20.
R. J.
Stevens
and
C.
Meneveau
, “
Flow structure and turbulence in wind farms
,”
Annu. Rev. Fluid Mech.
49
,
311
339
(
2017
).
21.
P. B. S.
Lissaman
, “
Energy effectiveness of arbitrary arrays of wind turbines
,”
J. Energy
3
,
323
328
(
1979
).
22.
S.
Emeis
, “
A simple analytical wind park model considering atmospheric stability
,”
Wind Energy
13
,
459
469
(
2009
).
23.
X.
Yang
,
S.
Kang
, and
F.
Sotiropoulos
, “
Computational study and modeling of turbine spacing effects in infinite aligned wind farms
,”
Phys. Fluids
24
,
115107
(
2012
).
24.
R. J. A. M.
Stevens
,
D. F.
Gayme
, and
C.
Meneveau
, “
Coupled wake boundary layer model of wind-farms
,”
J. Renewable Sustainable Energy
7
,
023115
(
2015
).
25.
G. M.
Starke
,
C.
Meneveau
,
J. R.
King
, and
D. F.
Gayme
, “
The area localized coupled model for analytical mean flow prediction in arbitrary wind farm geometries
,”
J. Renewable Sustainable Energy
13
,
033305
(
2021
).
26.
A.
Niayifar
and
F.
Porté-Agel
, “
Analytical modeling of wind farms: A new approach for power prediction
,”
Energies
9
,
741
(
2016
).
27.
J.
Teng
and
C. D.
Markfort
, “
A calibration procedure for an analytical wake model using wind farm operational data
,”
Energies
13
,
3537
(
2020
).
28.
R. J. A. M.
Stevens
,
D. F.
Gayme
, and
C.
Meneveau
, “
Generalized coupled wake boundary layer model: Applications and comparisons with field and LES data for two wind farms: Generalized coupled wake boundary layer model: Applications and comparisons with field and LES data for two wind farms
,”
Wind Energy
19
,
2023
2040
(
2016
).
29.
F.
Carbajo Fuertes
,
C.
Markfort
, and
F.
Porté-Agel
, “
Wind turbine wake characterization with nacelle-mounted wind lidars for analytical wake model validation
,”
Remote Sens.
10
,
668
(
2018
).
30.
N.
Hamilton
,
C. J.
Bay
,
P.
Fleming
,
J.
King
, and
L. A.
Martínez-Tossas
, “
Comparison of modular analytical wake models to the Lillgrund wind plant
,”
J. Renewable Sustainable Energy
12
,
053311
(
2020
).
31.
B. M.
Doekemeijer
,
E.
Simley
, and
P.
Fleming
, “
Comparison of the Gaussian wind farm model with historical data of three offshore wind farms
,”
Energies
15
,
1964
(
2022
).
32.
B. M.
Doekemeijer
,
D.
van der Hoek
, and
J.-W.
van Wingerden
, “
Closed-loop model-based wind farm control using FLORIS under time-varying inflow conditions
,”
Renewable Energy
156
,
719
730
(
2020
).
33.
M. F.
Howland
,
A. S.
Ghate
,
S. K.
Lele
, and
J. O.
Dabiri
, “
Optimal closed-loop wake steering—Part 1: Conventionally neutral atmospheric boundary layer conditions
,”
Wind Energy Sci.
5
,
1315
1338
(
2020
).
34.
J.
Schreiber
,
C. L.
Bottasso
,
B.
Salbert
, and
F.
Campagnolo
, “
Improving wind farm flow models by learning from operational data
,”
Wind Energy Sci.
5
,
647
673
(
2020
).
35.
M. F.
Howland
,
A. S.
Ghate
,
J. B.
Quesada
,
J. J.
Pena Martínez
,
W.
Zhong
,
F. P.
Larrañaga
,
S. K.
Lele
, and
J. O.
Dabiri
, “
Optimal closed-loop wake steering—Part 2: Diurnal cycle atmospheric boundary layer conditions
,”
Wind Energy Sci.
7
,
345
365
(
2022
).
36.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
37.
M. F.
Howland
,
J.
Bossuyt
,
L. A.
Martínez-Tossas
,
J.
Meyers
, and
C.
Meneveau
, “
Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions
,”
J. Renewable Sustainable Energy
8
,
043301
(
2016
).
38.
C. R.
Shapiro
,
D. F.
Gayme
, and
C.
Meneveau
, “
Modelling yawed wind turbine wakes: A lifting line approach
,”
J. Fluid Mech.
841
,
R1
(
2018
).
39.
L. A.
Martínez-Tossas
,
J.
Annoni
,
P. A.
Fleming
, and
M. J.
Churchfield
, “
The aerodynamics of the curled wake: A simplified model in view of flow control
,”
Wind Energy Sci.
4
,
127
138
(
2019
).
40.
P. M. O.
Gebraad
,
M. J.
Churchfield
, and
P. A.
Fleming
, “
Incorporating atmospheric stability effects into the FLORIS engineering model of wakes in wind farms
,”
J. Phys.: Conf. Ser.
753
,
052004
(
2016
).
41.
M.
Abkar
,
J.
Sørensen
, and
F.
Porté-Agel
, “
An analytical model for the effect of vertical wind veer on wind turbine wakes
,”
Energies
11
,
1838
(
2018
).
42.
M. C.
Kennedy
and
A.
O'Hagan
, “
Bayesian calibration of computer models
,”
J. R. Stat. Soc., Ser. B
63
,
425
464
(
2001
).
43.
S. H.
Cheung
,
T. A.
Oliver
,
E. E.
Prudencio
,
S.
Prudhomme
, and
R. D.
Moser
, “
Bayesian uncertainty analysis with applications to turbulence modeling
,”
Reliab. Eng. Syst. Safety
96
,
1137
1149
(
2011
).
44.
W.
Edeling
,
P.
Cinnella
,
R.
Dwight
, and
H.
Bijl
, “
Bayesian estimates of parameter variability in the k-ϵ turbulence model
,”
J. Comput. Phys.
258
,
73
94
(
2014
).
45.
J.
Ray
,
S.
Lefantzi
,
S.
Arunajatesan
, and
L.
Dechant
, “
Bayesian parameter estimation of a k-ϵ model for accurate jet-in-crossflow simulations
,”
AIAA J.
54
,
2432
2448
(
2016
).
46.
F.
Aerts
,
L.
Lanzilao
, and
J.
Meyers
, “
Bayesian uncertainty quantification framework for wake model calibration and validation with historical wind farm power data
,”
Wind Energy
26
,
786
802
(
2023
).
47.
J.
Zhang
and
X.
Zhao
, “
Quantification of parameter uncertainty in wind farm wake modeling
,”
Energy
196
,
117065
(
2020
).
48.
NREL
(2022). “
FLORIS
,” GitHub. https://github.com/NREL/floris
49.
M. T.
van Beek
,
A.
Viré
, and
S. J.
Andersen
, “
Sensitivity and uncertainty of the FLORIS model applied on the Lillgrund wind farm
,”
Energies
14
,
1293
(
2021
).
50.
A.
Rott
,
B.
Doekemeijer
,
J. K.
Seifert
,
J.-W.
van Wingerden
, and
M.
Kühn
, “
Robust active wake control in consideration of wind direction variability and uncertainty
,”
Wind Energy Sci.
3
,
869
882
(
2018
).
51.
E.
Simley
,
P.
Fleming
, and
J.
King
, “
Design and analysis of a wake steering controller with wind direction variability
,”
Wind Energy Sci.
5
,
451
468
(
2020
).
52.
J.
Quick
,
J.
King
,
R. N.
King
,
P. E.
Hamlington
, and
K.
Dykes
, “
Wake steering optimization under uncertainty
,”
Wind Energy Sci.
5
,
413
426
(
2020
).
53.
M. F.
Howland
, “
Wind farm yaw control set-point optimization under model parameter uncertainty
,”
J. Renewable Sustainable Energy
13
,
043303
(
2021
).
54.
I.
Katic
,
J.
Højstrup
, and
N. O.
Jensen
, “
A simple model for cluster efficiency
,” in Proceedings of the European Wind Energy Association Conference and Exhibition, Rome, Italy, 7-9 October 1986 (European Wind Energy Association,
1986
), pp.
407
409
.
55.
M.
Sinner
,
E.
Simley
,
J.
King
,
P.
Fleming
, and
L. Y.
Pao
, “
Power increases using wind direction spatial filtering for wind farm control: Evaluation using FLORIS, modified for dynamic settings
,”
J. Renewable Sustainable Energy
13
,
023310
(
2021
).
56.
H.
Zong
and
F.
Porté-Agel
, “
A momentum-conserving wake superposition method for wind farm power prediction
,”
J. Fluid Mech.
889
,
A8
(
2020
).
57.
M.
Bastankhah
,
B. L.
Welch
,
L. A.
Martínez-Tossas
,
J.
King
, and
P.
Fleming
, “
Analytical solution for the cumulative wake of wind turbines in wind farms
,”
J. Fluid Mech.
911
,
A53
(
2021
).
58.
M. F.
Howland
and
J. O.
Dabiri
, “
Influence of wake model superposition and secondary steering on model-based wake steering control with SCADA data assimilation
,”
Energies
14
,
52
(
2020
).
59.
A.
Crespo
,
J.
Hernández
, and
S.
Frandsen
, “
Survey of modelling methods for wind turbine wakes and wind farms
,”
Wind Energy
2
,
1
24
(
1999
).
60.
S.
Voutsinas
,
K.
Rados
, and
A.
Zervos
, “
On the analysis of wake effects in wind parks
,”
Wind Eng.
14
,
204
219
(
1990
).
61.
A.
Crespo
and
J.
Hernández
, “
Turbulence characteristics in wind-turbine wakes
,”
J. Wind Eng. Ind. Aerodyn.
61
,
71
85
(
1996
).
62.
M. M.
Pedersen
,
P.
van der Laan
,
M.
Friis-Møller
,
J.
Rinker
, and
P.-E.
Réthoré
(
2019
). “DTUWindEnergy/PyWake: PyWake,”
Zenodo
. https://10.5281/zenodo.2562662
63.
M. F.
Howland
,
O. R. A.
Dunbar
, and
T.
Schneider
, “
Parameter uncertainty quantification in an idealized GCM with a seasonal cycle
,”
J. Adv. Modeling Earth Syst.
14
,
e2021MS002735
(
2022
).
64.
S.
Brooks
,
A.
Gelman
,
G.
Jones
, and
X.-L.
Meng
,
Handbook of Markov Chain Monte Carlo
(
CRC Press
,
2011
).
65.
A.
Gelman
,
W. R.
Gilks
, and
G. O.
Roberts
, “
Weak convergence and optimal scaling of random walk Metropolis algorithms
,”
Ann. Appl. Probab.
7
,
110
120
(
1997
).
66.
A.
Tarantola
,
Inverse Problem Theory and Methods for Model Parameter Estimation
(
Society for Industrial and Applied Mathematics
,
2005
).
67.
R. C.
Smith
,
Uncertainty Quantification: Theory, Implementation, and Applications
(
Society for Industrial and Applied Mathematics
,
2013
), Vol.
12
.
68.
D.
Allaerts
and
J.
Meyers
, “
Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer
,”
Phys. Fluids
27
,
065108
(
2015
).
69.
M. F.
Howland
,
A. S.
Ghate
, and
S. K.
Lele
, “
Influence of the geostrophic wind direction on the atmospheric boundary layer flow
,”
J. Fluid Mech.
883
,
A39
(
2020
).
70.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind-turbine array boundary layers
,”
Phys. Fluids
22
,
015110
(
2010
).
71.
L. A.
Martínez-Tossas
,
J.
King
,
E.
Quon
,
C. J.
Bay
,
R.
Mudafort
,
N.
Hamilton
,
M. F.
Howland
, and
P. A.
Fleming
, “
The curled wake model: A three-dimensional and extremely fast steady-state wake solver for wind plant flows
,”
Wind Energy Sci.
6
,
555
570
(
2021
).
72.
M.
Bastankhah
,
C. R.
Shapiro
,
S.
Shamsoddin
,
D. F.
Gayme
, and
C.
Meneveau
, “
A vortex sheet based analytical model of the curled wake behind yawed wind turbines
,”
J. Fluid Mech.
933
,
A2
(
2022
).
73.
J.
King
,
P.
Fleming
,
R.
King
,
L. A.
Martínez-Tossas
,
C. J.
Bay
,
R.
Mudafort
, and
E.
Simley
, “
Control-oriented model for secondary effects of wake steering
,”
Wind Energy Sci.
6
,
701
714
(
2021
).
You do not currently have access to this content.