The abundance and replenishment nature of solid biomass prompt fuel substitution for gasification and thermal power plants. However, many challenges are encountered while utilizing raw biomass, such as seasonality, strong hydrophilicity, low bulk and energy density, excess oxygen content, less compositional homogeneity, and poor grindability. It is, therefore, indispensable to augment the thermo-chemical properties of the solid biomass by performing suitable pretreatment. Among the various pretreatment techniques, non-oxidative torrefaction effectively upgrades solid biomass to coal-like fuel altering its physico-chemical properties. Therefore, in this work, torrefaction of rice husk and sugarcane bagasse have been performed in a fixed bed reactor by varying temperatures from 210–330 °C and residence time from 30–60 min under a non-oxidative environment. The experimental investigation illustrates a decrease in mass and energy yield of the biomass with a rise in temperature and residence time. Conversely, the higher heating value of rice husk and sugarcane bagasse has improved by 119.4% and 128.9%, respectively. The hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratio of the torrefied biomass has reduced to enriched fuel variety as indicated by the van Krevelen plot. The decomposition and structural modifications were assessed using Fourier transform infrared spectroscopy, x-ray diffraction, and morphology analysis. Based on the experimental observations, it has been found that torrefaction of rice husk at 290 °C and 30 min and sugarcane bagasse at 270 °C and 30 min would generate enriched syngas using a dual fluidized bed gasification system. Furthermore, water gas shift reactions will be promoted to enhance the percentage of hydrogen in the gas mixture.

1.
F.
Pinto
,
J.
Gominho
,
R. N.
André
,
D.
Gonçalves
,
M.
Miranda
,
F.
Varela
,
D.
Neves
,
J.
Santos
,
A.
Lourenço
, and
H.
Pereira
, “
Effect of rice husk torrefaction on syngas production and quality
,”
Energy Fuels
31
(
5
),
5183
5192
(
2017
).
2.
K.
Manatura
, “
Inert torrefaction of sugarcane bagasse to improve its fuel properties
,”
Case Stud. Therm. Eng.
19
,
100623
(
2020
).
3.
W. H.
Chen
,
B. J.
Lin
,
Y. Y.
Lin
,
Y. S.
Chu
,
A. T.
Ubando
,
P. L.
Show
,
H. C.
Ong
,
J. S.
Chang
,
S. H.
Ho
,
A. B.
Culaba
,
A.
Pétrissans
, and
M.
Pétrissans
, “
Progress in biomass torrefaction: Principles, applications and challenges
,”
Prog. Energy Combust. Sci.
82
,
100887
(
2021
).
4.
K. A.
Abdulyekeen
,
A. A.
Umar
,
M. F. A.
Patah
, and
W. M. A. W.
Daud
, “
Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass
,”
Renewable Sustainable Energy Rev.
150
,
111436
(
2021
).
5.
D.
Chen
,
F.
Chen
,
K.
Cen
,
X.
Cao
,
J.
Zhang
, and
J.
Zhou
, “
Upgrading rice husk via oxidative torrefaction: Characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction
,”
Fuel
275
,
117936
(
2020
).
6.
S.
Zhang
,
Q.
Dong
,
T.
Chen
, and
Y.
Xiong
, “
Combination of light bio-oil washing and torrefaction pretreatment of rice husk: Its effects on physicochemical characteristics and fast pyrolysis behavior
,”
Energy Fuels
30
(
4
),
3030
3037
(
2016
).
7.
S.
Singh
,
J. P.
Chakraborty
, and
M. K.
Mondal
, “
Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel
,”
Renewable Energy
153
,
711
724
(
2020
).
8.
J. J.
Chew
and
V.
Doshi
, “
Recent advances in biomass pretreatment—Torrefaction fundamentals and technology
,”
Renewable Sustainable Energy Rev.
15
(
8
),
4212
4222
(
2011
).
9.
X.
Cao
,
Q.
Luo
,
F.
Song
,
G.
Liu
,
S.
Chen
,
Y.
Li
,
X.
Li
, and
Y.
Lu
, “
Effects of oxidative torrefaction on the physicochemical properties and pyrolysis products of hemicellulose in bamboo processing residues
,”
Ind. Crops Prod.
191
,
115986
(
2023
).
10.
P.
Basu
,
Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory
, 2nd ed. (
Academic Press
,
2013
).
11.
S.
Gent
,
M.
Twedt
,
C.
Gerometta
, and
E.
Almberg
,
Theoretical and Applied Aspects of Biomass Torrefaction: For Biofuels and Value-Added Products
, 1st ed. (
Butterworth-Heinemann
,
2017
).
12.
S. K.
Hoekman
,
A.
Broch
,
C.
Robbins
,
B.
Zielinska
, and
L.
Felix
, “
Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks
,”
Biomass Convers. Biorefin.
3
(
2
),
113
126
(
2013
).
13.
S.
Chang
,
Z.
Zhao
,
A.
Zheng
,
F.
He
,
Z.
Huang
, and
H.
Li
, “
Characterization of products from torrefaction of sprucewood and bagasse in an auger reactor
,”
Energy Fuels
26
(
11
),
7009
7017
(
2012
).
14.
G.
Garrote
,
H.
Domínguez
, and
J. C.
Parajó
, “
Hydrothermal processing of lignocellulosic materials
,”
Holz Roh- Werkst.
57
(
3
),
191
202
(
1999
).
15.
Q. V.
Bach
and
O.
Skreiberg
, “
Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction
,”
Renewable Sustainable Energy Rev.
54
,
665
677
(
2016
).
16.
Y.
Niu
,
Y.
Lv
,
Y.
Lei
,
S.
Liu
,
Y.
Liang
,
D.
Wang
, and
S.
Hui
, “
Biomass torrefaction: Properties, applications, challenges, and economy
,”
Renewable Sustainable Energy Rev.
115
,
109395
(
2019
).
17.
W.
Yan
,
J. T.
Hastings
,
T. C.
Acharjee
,
C. J.
Coronella
, and
V. R.
Vásquez
, “
Mass and energy balances of wet torrefaction of lignocellulosic biomass
,”
Energy Fuels
24
(
9
),
4738
4742
(
2010
).
18.
D. A.
Granados
,
R. A.
Ruiz
,
L. Y.
Vega
, and
F.
Chejne
, “
Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process
,”
Energy
139
,
818
827
(
2017
).
19.
S.
Kanwal
,
N.
Chaudhry
,
S.
Munir
, and
H.
Sana
, “
Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse)
,”
Waste Manage.
88
,
280
290
(
2019
).
20.
W.
Cai
,
A.
Fivga
,
O.
Kaario
, and
R.
Liu
, “
Effects of torrefaction on the physicochemical characteristics of sawdust and rice husk and their pyrolysis behavior by thermogravimetric analysis and pyrolysis-gas chromatography/mass spectrometry
,”
Energy Fuels
31
(
2
),
1544
1554
(
2017
).
21.
E. A.
Silveira
,
S.
Luz
,
K.
Candelier
,
L. A.
Macedo
, and
P.
Rousset
, “
An assessment of biomass torrefaction severity indexes
,”
Fuel
288
,
119631
(
2021
).
22.
H.
Hihu Muigai
,
B. J.
Choudhury
,
P.
Kalita
, and
V. S.
Moholkar
, “
Physico–chemical characterization and pyrolysis kinetics of Eichhornia Crassipes, Thevetia Peruviana, and Saccharum Officinarum
,”
Fuel
289
,
119949
(
2021
).
23.
ASTM
, “
Standard test method for moisture analysis of particulate wood fuels
,” Standard No. ASTM E871-82 (
ASTM Int
.,
2019
).
24.
ASTM
, “
Standard test method for volatile matter in the analysis of particulate wood fuels
,” Standard No. ASTM E872-82 (
ASTM Int
.,
2019
).
25.
ASTM
, “
Standard test method for determination of ash content of particulate wood fuels
,” Standard No. ASTM E1534-93 (
ASTM Int
.,
2019
).
26.
S.
Zhang
,
Y.
Su
,
K.
Ding
, and
H.
Zhang
, “
Impacts and release characteristics of K and Mg contained in rice husk during torrefaction process
,”
Energy
186
,
115888
(
2019
).
27.
M.
Faraji
and
M.
Saidi
, “
Process simulation and optimization of groundnut shell biomass air gasification for hydrogen-enriched syngas production
,”
Int. J. Hydrogen Energy
47
(
28
),
13579
13591
(
2022
).
28.
Q.
Hu
,
Y.
Shen
,
J. W.
Chew
,
T.
Ge
, and
C. H.
Wang
, “
Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production
,”
Chem. Eng. J.
379
,
122346
(
2020
).
29.
K.
Göransson
,
U.
Söderlind
,
J.
He
, and
W.
Zhang
, “
Review of syngas production via biomass DFBGs
,”
Renewable Sustainable Energy Rev.
15
(
1
),
482
492
(
2011
).
30.
L.
Zhang
,
Z.
Wang
,
J.
Ma
,
W.
Kong
,
P.
Yuan
,
R.
Sun
, and
B.
Shen
, “
Analysis of functionality distribution and microstructural characteristics of upgraded rice husk after undergoing non-oxidative and oxidative torrefaction
,”
Fuel
310
,
122477
(
2022
).
31.
A. D.
Kamble
,
V. K.
Saxena
,
P. D.
Chavan
, and
V. A.
Mendhe
, “
Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context
,”
Int. J. Min. Sci. Technol.
29
(
2
),
171
186
(
2019
).
32.
Z.
Zhao
,
S.
Feng
,
Y.
Zhao
,
Z.
Wang
,
J.
Ma
,
L.
Xu
,
J.
Yang
, and
B.
Shen
, “
Investigation on the fuel quality and hydrophobicity of upgraded rice husk derived from various inert and oxidative torrefaction conditions
,”
Renewable Energy
189
,
1234
1248
(
2022
).
33.
M.
Amer
,
M.
Nour
,
M.
Ahmed
,
S.
Ookawara
,
S.
Nada
, and
A.
Elwardany
, “
The effect of microwave drying pretreatment on dry torrefaction of agricultural biomasses
,”
Bioresour. Technol.
286
,
121400
(
2019
).
34.
U.
Bordoloi
,
D.
Das
,
D.
Kashyap
,
D.
Patwa
,
P.
Bora
,
H. H.
Muigai
, and
P.
Kalita
, “
Synthesis and comparative analysis of biochar based form-stable phase change materials for thermal management of buildings
,”
J. Energy Storage
55
,
105801
(
2022
).
35.
S.
Chaluvadi
,
A.
Ujjwal
, and
R. K.
Singh
, “
Effect of torrefaction prior to biomass size reduction on ethanol production
,”
Waste Biomass Valorization
10
(
12
),
3567
3577
(
2019
).
36.
H. H.
Muigai
,
U.
Bordoloi
,
R.
Hussain
,
K.
Ravi
,
V. S.
Moholkar
, and
P.
Kalita
, “
A comparative study on synthesis and characterization of biochars derived from lignocellulosic biomass for their candidacy in agronomy and energy applications
,”
Int. J. Energy Res.
45
(
3
),
4765
4781
(
2021
).
You do not currently have access to this content.