Cu2O-based solar cells offer a promising solution to address future energy challenges due to their affordability, eco-friendliness, and impressive power conversion efficiency (PCE). With the development of thin film deposition technology, the maximum PCE of single-junction solar cells fabricated based on Cu2O is 9.5%. Because the spectral sensitivity overlaps between Cu2O and crystalline silicon (c-Si) is small, Cu2O thin-film solar cells can be made into tandem solar cells with Si-based solar cells to achieve higher PCE. The Cu2O–Si tandem solar cell has been delivered 24.2% PCE in 2020, a time when the PCE of stand-alone silicon solar cells was 17.6%. The purpose of this paper is to summarize the development of Cu2O-based heterojunction, homojunction. The Cu2O material properties, n and p-type doping, the role of defects and impurities in bulk of films or at the interface of the p–n-junction and n-type buffer layer on the performance of Cu2O-based heterojunction like ZnO–Cu2O, and the difficulty in decreasing the interface state and doping in Cu2O homojunction solar cells are discussed. This review discusses the Cu2O film material preparation method, the history of Cu2O based solar cells, the essential factors required to enhance the performance of various types of Cu2O-based solar cells, and the potential future research opportunities for as a top subcells in Cu2O–Si tandem solar cells.

1.
S. F. U.
Farhad
et al, “
Structural, optical, electrical, and photoelectrochemical properties of cuprous oxide thin films grown by modified SILAR method
,”
Mater. Sci. Semicond. Process.
95
,
68
75
(
2019
).
2.
Y.-K.
Hsu
,
J.-R.
Wu
,
M.-H.
Chen
,
Y.-C.
Chen
, and
Y.-G.
Lin
, “
Fabrication of homojunction Cu2O solar cells by electrochemical deposition
,”
Appl. Surf. Sci.
354
,
8
13
(
2015
).
3.
J.
Cui
and
U. J.
Gibson
, “
A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells
,”
J. Phys. Chem. C
114
(
14
),
6408
6412
(
2010
).
4.
P.
Pattanasattayavong
,
S.
Thomas
,
G.
Adamopoulos
,
M. A.
McLachlan
, and
T. D.
Anthopoulos
, “
p-channel thin-film transistors based on spray-coated Cu2O films
,”
Appl. Phys. Lett.
102
(
16
),
163505
(
2013
).
5.
H.-J.
Kim
and
J.-H.
Lee
, “
Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview
,”
Sens. Actuators, B
192
,
607
627
(
2014
).
6.
Y.-K.
Hsu
,
H.-H.
Lin
,
M.-H.
Chen
,
Y.-C.
Chen
, and
Y.-G.
Lin
, “
Polarity-dependant performance of p-Cu2O/n-ZnO heterojunction solar cells
,”
Electrochim. Acta
144
,
295
299
(
2014
).
7.
A. L.
Rogach
et al, “
Light‐emitting diodes with semiconductor nanocrystals
,”
Angew. Chem., Int. Ed.
47
(
35
),
6538
6549
(
2008
).
8.
J.
Wei
,
Z.
Zang
,
Y.
Zhang
,
M.
Wang
,
J.
Du
, and
X.
Tang
, “
Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites
,”
Opt. Lett.
42
(
5
),
911
914
(
2017
).
9.
T.
Zhou
et al, “
Efficient charge carrier separation and excellent visible light photoresponse in Cu2O nanowires
,”
Nano Energy
50
,
118
125
(
2018
).
10.
C.
Wadia
,
A. P.
Alivisatos
, and
D. M.
Kammen
, “
Materials availability expands the opportunity for large-scale photovoltaics deployment
,”
Environ. Sci. Technol.
43
(
6
),
2072
2077
(
2009
).
11.
R.
Tadjine
,
A.
Houimi
,
M. M.
Alim
, and
N.
Oudini
, “
Oxygen flow rate effect on copper oxide thin films deposited by radio frequency magnetron sputtering
,”
Thin Solid Films
741
,
139013
(
2022
).
12.
M.
Nyborg
,
A.
Azarov
,
K.
Bergum
, and
E.
Monakhov
, “
Deposition and characterization of lithium doped direct current magnetron sputtered Cu2O films
,”
Thin Solid Films
722
,
138573
(
2021
).
13.
H.
Zhu
,
J.
Zhang
,
C.
Li
,
F.
Pan
,
T.
Wang
, and
B.
Huang
, “
Cu2O thin films deposited by reactive direct current magnetron sputtering
,”
Thin Solid Films
517
(
19
),
5700
5704
(
2009
).
14.
K.
Akimoto
,
S.
Ishizuka
,
M.
Yanagita
,
Y.
Nawa
,
G. K.
Paul
, and
T.
Sakurai
, “
Thin film deposition of Cu2O and application for solar cells
,”
Sol. Energy
80
(
6
),
715
722
(
2006
).
15.
F. K.
Mugwang'a
,
P. K.
Karimi
,
W. K.
Njoroge
,
O.
Omayio
, and
S. M.
Waita
, “
Optical characterization of copper oxide thin films prepared by reactive dc magnetron sputtering for solar cell applications
,”
Int. J. Thin Film Sci. Technol.
2
,
15
24
(
2013
).
16.
M. A.
Hossain
et al, “
Controlled growth of Cu2O thin films by electrodeposition approach
,”
Mater. Sci. Semicond. Process.
63
,
203
211
(
2017
).
17.
D.
Chua
,
S. B.
Kim
, and
R.
Gordon
, “
Enhancement of the open circuit voltage of Cu2O/Ga2O3 heterojunction solar cells through the mitigation of interfacial recombination
,”
AIP Adv.
9
(
5
),
055203
(
2019
).
18.
A. R.
Zainun
,
S.
Tomoya
,
U. M.
Noor
,
M.
Rusop
, and
I.
Masaya
, “
New approach for generating Cu2O/TiO2 composite films for solar cell applications
,”
Mater. Lett.
66
(
1
),
254
256
(
2012
).
19.
L. C.-K.
Liau
,
Y.-C.
Lin
, and
Y.-J.
Peng
, “
Fabrication pathways of p–n Cu2O homojunction films by electrochemical deposition processing
,”
J. Phys. Chem. C
117
(
50
),
26426
26431
(
2013
).
20.
M.
Cheon
,
B.
Jang
,
S. J.
Kim
,
J. I.
Jang
, and
S. Y.
Jeong
, “
High-quality epitaxial Cu2O films with (111)-terminated plateau grains obtained from single-crystal Cu (111) thin films by rapid thermal oxidation
,”
J. Alloys Compd.
801
,
36
541
(
2019
).
21.
A. O.
Musa
,
T.
Akomolafe
, and
M. J.
Carter
, “
Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties
,”
Sol. Energy Mater. Sol. Cells
51
(
3–4
),
305
316
(
1998
).
22.
B. P.
Rai
, “
Cu2O solar cells: A review
,”
Sol. Cells
25
(
3
),
265
272
(
1988
).
23.
Y.
Nishi
,
T.
Miyata
, and
T.
Minami
, “
Electrochemically deposited Cu2O thin films on thermally oxidized Cu2O sheets for solar cell applications
,”
Sol. Energy Mater. Sol. Cells
155
,
405
410
(
2016
).
24.
Y.
Ievskaya
,
R. L. Z.
Hoye
,
A.
Sadhanala
,
K. P.
Musselman
, and
J. L.
MacManus-Driscoll
, “
Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performance
,”
Sol. Energy Mater. Sol. Cells
135
,
43
48
(
2015
).
25.
J.
Li
,
Z.
Mei
,
D.
Ye
,
H.
Liang
,
Y.
Liu
, and
X.
Du
, “
Growth of single-crystalline Cu2O (111) film on ultrathin MgO modified α-Al2O3 (0001) substrate by molecular beam epitaxy
,”
J. Cryst. Growth
353
(
1
),
63
67
(
2012
).
26.
Y.
Tolstova
,
S. S.
Wilson
,
S. T.
Omelchenko
,
N. S.
Lewis
, and
H. A.
Atwater
, “
Molecular beam epitaxy of Cu2O heterostructures for photovoltaics
,” in
IEEE 42nd Photovoltaic Specialist Conference (PVSC)
(
IEEE
,
2015
).
27.
M.
Kracht
,
J.
Schörmann
, and
M.
Eickhoff
, “
Plasma assisted molecular beam epitaxy of Cu2O on MgO(001): Influence of copper flux on epitaxial orientation
,”
J. Cryst. Growth
436
,
87
91
(
2016
).
28.
D. S.
Darvish
and
H. A.
Atwater
, “
Epitaxial growth of Cu2O and ZnO/Cu2O thin films on MgO by plasma-assisted molecular beam epitaxy
,”
J. Cryst. Growth
319
(
1
),
39
43
(
2011
).
29.
S. F. U.
Farhad
,
D.
Cherns
,
J. A.
Smith
,
N. A.
Fox
, and
D. J.
Fermín
, “
Pulsed laser deposition of single phase n-and p-type Cu2O thin films with low resistivity
,”
Mater. Des.
193
,
108848
(
2020
).
30.
C. V.
Kartha
et al, “
Insights into Cu2O thin film absorber via pulsed laser deposition
,”
Ceram. Int.
48
(
11
),
15274
15281
(
2022
).
31.
N.
Kikuchi
and
K.
Tonooka
, “
Electrical and structural properties of Ni-doped Cu2O films prepared by pulsed laser deposition
,”
Thin Solid Films
486
(
1–2
),
33
37
(
2005
).
32.
T.
Minami
,
H.
Tanaka
,
T.
Shimakawa
,
T.
Miyata
, and
H.
Sato
, “
High-efficiency oxide heterojunction solar cells using Cu2O sheets
,”
Jpn. J. Appl. Phys., Part 2
43
(
7A
),
L917
(
2004
).
33.
W.
Wang
,
D.
Wu
,
Q.
Zhang
,
L.
Wang
, and
M.
Tao
, “
pH-dependence of conduction type in cuprous oxide synthesized from solution
,”
J. Appl. Phys.
107
(
12
),
123717
(
2010
).
34.
C. M.
McShane
and
K.-S.
Choi
, “
Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth
,”
J. Am. Chem. Soc.
131
(
7
),
2561
2569
(
2009
).
35.
T.
Wang
et al, “
Homogeneous Cu2O p-n junction photocathodes for solar water splitting
,”
Appl. Catal. B
226
,
31
37
(
2018
).
36.
F. S. B.
Kafi
,
K. M. D. C.
Jayathileka
,
R. P.
Wijesundera
, and
W.
Siripala
, “
Effect of bath pH on interfacial properties of electrodeposited n‐Cu2O films
,”
Phys. Status Solidi B
255
(
6
),
1700541
(
2018
).
37.
D. O.
Scanlon
and
G. W.
Watson
, “
Undoped n-type Cu2O: Fact or fiction?
,”
J. Phys. Chem. Lett.
1
(
17
),
2582
2585
(
2010
).
38.
C. M.
McShane
and
K.-S.
Choi
, “
Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement
,”
Phys. Chem. Chem. Phys.
14
(
17
),
6112
6118
(
2012
).
39.
A. S.
Reddy
,
S.
Uthanna
, and
P. S.
Reddy
, “
Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures
,”
Appl. Surf. Sci.
253
(
12
),
5287
5292
(
2007
).
40.
C. L. A.
Ricardo
,
M.
D'Incau
,
M.
Leoni
,
C.
Malerba
,
A.
Mittiga
, and
P.
Scardi
, “
Structural properties of RF-magnetron sputtered Cu2O thin films
,”
Thin Solid Films
520
(
1
),
280
286
(
2011
).
41.
L. C.
Olsen
,
R. C.
Bohara
, and
M. W.
Urie
, “
Explanation for low‐efficiency Cu2O Schottky‐barrier solar cells
,”
Appl. Phys. Lett.
34
(
1
),
47
49
(
1979
).
42.
L. C.
Olsen
,
F. W.
Addis
, and
W.
Miller
, “
Experimental and theoretical studies of Cu2O solar cells
,”
Sol. Cells
7
(
3
),
247
279
(
1982
).
43.
J.
Herion
,
E. A.
Niekisch
, and
G.
Scharl
, “
Investigation of metal oxide/cuprous oxide heterojunction solar cells
,”
Sol. Energy Mater.
4
(
1
),
101
112
(
1980
).
44.
Toshiba
, see https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/22/2209-02.html for “Toshiba boosts transparent Cu2O tandem solar cell to a new high.”
45.
W.
Shockley
and
H. J.
Queisser
, “
Detailed balance limit of efficiency of p‐n junction solar cells
,”
J. Appl. Phys.
32
(
3
),
510
519
(
1961
).
46.
M. R.
Mitroi
,
V.
Ninulescu
, and
L.
Fara
, “
Tandem solar cells based on Cu2O and c-Si subcells in parallel configuration: Numerical simulation
,”
Int. J. Photoenergy
2017
,
7284367
.
47.
N.
Nakagawa
,
S.
Shibasaki
,
Y.
Honishi
,
M.
Yamazaki
,
Y. S.
Hiraoka
, and
K.
Yamamoto
, “
Development of a Zn-based n-layer in cuprous oxide top cells for high-efficiency tandem photovoltaics
,” in
47th IEEE Photovoltaic Specialists Conference (PVSC)
(
IEEE
,
Calgary, AB, Canada
,
2020
), pp.
0983
0985
.
48.
B. K.
Meyer
et al, “
Binary copper oxide semiconductors: From materials towards devices
,”
Phys. Status Solidi B
249
(
8
),
1487
1509
(
2012
).
49.
L.-C.
Chen
, “
Review of preparation and optoelectronic characteristics of Cu2O-based solar cells with nanostructure
,”
Mater. Sci. Semicond. Process.
16
(
5
),
1172
1185
(
2013
).
50.
A.
Lakshmanan
,
Z. C.
Alex
, and
S. R.
Meher
, “
Recent advances in cuprous oxide thin film based photovoltaics
,”
Mater. Today Sustainability
20
,
100244
(
2022
).
51.
A.
Sekkat
et al, “
Open-air printing of Cu2O thin films with high hole mobility for semitransparent solar harvesters
,”
Commun. Mater.
2
(
1
),
78
(
2021
).
52.
T.
Minami
,
Y.
Nishi
, and
T.
Miyata
, “
Cu2O-based solar cells using oxide semiconductors
,”
J. Semicond.
37
(
1
),
014002
(
2016
).
53.
H.
Raebiger
,
S.
Lany
, and
A.
Zunger
, “
Origins of the p-type nature and cation deficiency in Cu2O and related materials
,”
Phys. Rev. B
76
(
4
),
045209
(
2007
).
54.
P.
Lv
,
W.
Zheng
,
L.
Lin
,
F.
Peng
,
Z.
Huang
, and
F.
Lai
, “
I–V characteristics of ZnO/Cu2O thin film n–i–p heterojunction
,”
Physica B
406
(
6–7
),
1253
1257
(
2011
).
55.
K.
Matsuzaki
et al, “
Hole-doping to a Cu(I)-based semiconductor with an isovalent cation: Utilizing a complex defect as a shallow acceptor
,”
J. Am. Chem. Soc.
144
(
36
),
16572
16578
(
2022
).
56.
M.
Xu
,
X.
Liu
,
W.
Xu
,
H.
Xu
,
X.
Hao
, and
X.
Feng
, “
Low resistivity phase-pure n-type Cu2O films realized via post-deposition nitrogen plasma treatment
,”
J. Alloys Compd.
769
,
484
489
(
2018
).
57.
A. A.
Ejigu
and
L.-C.
Chao
, “
Characterization of n-type Cu2O deposited by reactive ion beam sputter deposition
,”
J. Vac. Sci. Technol. B
35
(
6
),
061205
(
2017
).
58.
J.
Han
et al, “
Mechanistic investigation on tuning the conductivity type of cuprous oxide (Cu2O) thin films via deposition potential
,”
Int. J. Hydrogen Energy
43
(
30
),
13764
13777
(
2018
).
59.
T.
Minami
,
Y.
Nishi
, and
T.
Miyata
, “
Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications
,”
Appl. Phys. Lett.
105
(
21
),
212104
(
2014
).
60.
R.
Kara
,
H.
Lahmar
,
L.
Mentar
,
R.
Siab
,
F.
Kadirgan
, and
A.
Azizi
, “
Electrochemical growth and characterization of Cu2O:Na/ZnO heterojunctions for solar cells applications
,”
J. Alloys Compd.
817
,
152748
(
2020
).
61.
T.
Minami
,
T.
Miyata
, and
Y.
Nishi
, “
Relationship between the electrical properties of the n-oxide and p-Cu2O layers and the photovoltaic properties of Cu2O-based heterojunction solar cells
,”
Sol. Energy Mater. Solar Cells
147
,
85
93
(
2016
).
62.
T.
Minami
,
J.
Yamazaki
, and
T.
Miyata
, “
Efficiency enhanced solar cells with a Cu2O homojunction grown epitaxially on p-Cu2O: Na sheets by electrochemical deposition
,”
MRS Commun.
6
(
4
),
416
420
(
2016
).
63.
Y. S.
Lee
et al, “
Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells
,”
J. Mater. Chem. A
1
(
48
),
15416
15422
(
2013
).
64.
P.
Zhang
,
Y.
Zhou
,
Q.
Yan
,
F.
Liu
,
J.
Li
, and
G.
Dong
, “
A combined experimental-computational study on nitrogen doped Cu2O as the wide-spectrum absorption material
,”
J. Semicond.
35
(
10
),
103001
(
2014
).
65.
L.
Luo
et al, “
Study of Se/Te-doped Cu2O as a hole transport material in perovskite solar cells
,”
RSC Adv.
13
(
13
),
8476
8486
(
2023
).
66.
A.
Živković
,
A.
Roldan
, and
N. H.
de Leeuw
, “
Tuning the electronic band gap of Cu2O via transition metal doping for improved photovoltaic applications
,”
Phys. Rev. Mater.
3
(
11
),
115202
(
2019
).
67.
F.
Hu
,
Y.
Zou
,
L.
Wang
,
Y.
Wen
, and
Y.
Xiong
, “
Photostable Cu2O photoelectrodes fabricated by facile Zn-doping electrodeposition
,”
Int. J. Hydrogen Energy
41
(
34
),
15172
15180
(
2016
).
68.
Z.-Y.
Zhao
,
J.
Yi
, and
D.-C.
Zhou
, “
Electronic structures of halogen-doped Cu2O based on DFT calculations
,”
Chin. Phys. B
23
(
1
),
017401
(
2013
).
69.
Q.
Bai
,
W.
Wang
,
Q.
Zhang
, and
M.
Tao
, “
N-type doping in Cu2O with F, Cl, And Br: A first-principles study
,”
J. Appl. Phys.
111
(
2
),
023709
(
2012
).
70.
X.
Han
,
K.
Han
, and
M.
Tao
, “
Characterization of Cl-doped n-type Cu2O prepared by electrodeposition
,”
Thin Solid Films
518
(
19
),
5363
5367
(
2010
).
71.
S. R.
Meher
,
A.
Lakshmanan
,
D.
Gupta
, and
Z. C.
Alex
, “
N-type doping feasibility of Cu2O with in and al for cost-effective photovoltaics: An ab initio investigation
,”
Mater. Today Commun.
26
,
102015
(
2021
).
72.
G.
Martin
,
A.
Botchkarev
,
A.
Rockett
, and
H.
Morkoç
, “
Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy
,”
Appl. Phys. Lett.
68
(
18
),
2541
2543
(
1996
).
73.
C. J.
Dong
et al, “
Valence band offset of Cu2O/In2O3 heterojunction determined by x-ray photoelectron spectroscopy
,”
J. Appl. Phys.
110
(
7
),
073712
(
2011
).
74.
A. S.
Zoolfakar
et al, “Enhancing the current density of electrodeposited ZnO–Cu2O solar cells by engineering their heterointerfaces,”
J. Mater. Chem.
22
(
40
),
21767
21775
(
2012
).
75.
Y. M.
Guo
,
L. P.
Zhu
,
J.
Jiang
,
L.
Hu
,
C. L.
Ye
, and
Z. Z.
Ye
, “
Valence band offset of n-ZnO/p-MgxNi1-xO heterojunction measured by x-ray photoelectron spectroscopy
,”
Appl. Phys. Lett.
101
(
5
),
052109
(
2012
).
76.
S.
Faÿ
,
L.
Feitknecht
,
R.
Schlüchter
,
U.
Kroll
,
E.
Vallat-Sauvain
, and
A.
Shah
, “
Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells
,”
Sol. Energy Mater. Sol. Cells
90
(
18–19
),
2960
2967
(
2006
).
77.
M.
Yang
,
L.
Zhu
,
Y.
Li
,
L.
Cao
, and
Y.
Guo
, “
Asymmetric interface band alignments of Cu2O/ZnO and ZnO/Cu2O heterojunctions
,”
J. Alloys Compd.
578
,
143
147
(
2013
).
78.
A.
Mittiga
,
E.
Salza
,
F.
Sarto
,
M.
Tucci
, and
R.
Vasanthi
, “
Heterojunction solar cell with 2% efficiency based on a Cu2O substrate
,”
Appl. Phys. Lett.
88
(
16
),
163502
(
2006
).
79.
S.
Hussain
,
C.
Cao
,
G.
Nabi
,
W. S.
Khan
,
Z.
Usman
, and
T.
Mahmood
, “
Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells
,”
Electrochim. Acta
56
(
24
),
8342
8346
(
2011
).
80.
T. S.
Gershon
et al, “
Improved fill factors in solution-processed ZnO/Cu2O photovoltaics
,”
Thin Solid Films
536
,
280
285
(
2013
).
81.
Z.
Zang
, “
Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films
,”
Appl. Phys. Lett.
112
(
4
),
042106
(
2018
).
82.
B.
Kramm
et al, “
The band alignment of Cu2O/ZnO and Cu2O/GaN heterostructures
,”
Appl. Phys. Lett.
100
(
9
),
094102
(
2012
).
83.
T.
Minami
,
Y.
Nishi
,
T.
Miyata
, and
J.-I.
Nomoto
, “
High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets
,”
Appl. Phys. Express
4
(
6
),
062301
(
2011
).
84.
Y.
Nishi
,
T.
Miyata
, and
T.
Minami
, “
The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells
,”
Thin Solid Films
528
,
72
76
(
2013
).
85.
T.
Minami
,
Y.
Nishi
, and
T.
Miyata
, “
High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer
,”
Appl. Phys. Express
6
(
4
),
044101
(
2013
).
86.
T.
Minami
,
Y.
Nishi
, and
T.
Miyata
, “
Efficiency enhancement using a Zn1−xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells
,”
Appl. Phys. Express
9
(
5
),
052301
(
2016
).
87.
S.
Shibasaki
et al, “
Highly transparent Cu2O absorbing layer for thin film solar cells
,”
Appl. Phys. Lett.
119
(
24
),
242102
(
2021
).
88.
L.
Yu
,
L.
Xiong
, and
Y.
Yu
, “
Cu2O homojunction solar cells: F-doped n-type thin film and highly improved efficiency
,”
J. Phys. Chem. C
119
(
40
),
22803
22811
(
2015
).
89.
N. G.
Elfadill
,
M. R.
Hashim
,
K. M.
Chahrour
, and
S. A.
Mohammed
, “
Preparation of p-type Na-doped Cu2O by electrodeposition for a p-n homojunction thin film solar cell
,”
Semicond. Sci. Technol.
31
(
6
),
065001
(
2016
).
90.
T.
Miyata
,
J.
Yamazaki
,
K.
Watanabe
,
H.
Tokunaga
, and
T.
Minami
, “
Homojunction Cu2O solar cells fabricated with various impurity-doped epitaxially grown n-type Cu2O thin film by electrochemical deposition
,”
ECS Trans.
80
(
10
),
693
(
2017
).
91.
C.
Zhu
and
M. J.
Panzer
, “
Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications
,”
ACS Appl. Mater. Interfaces
7
(
10
),
5624
5628
(
2015
).
92.
C. M.
Mcshane
,
W. P.
Siripala
, and
K. S.
Choi
, “
Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells
,”
J. Phys. Chem. Lett.
1
(
18
),
2666
2670
(
2010
).
93.
R. P.
Wijesundera
,
L. K. A. D. D. S.
Gunawardhana
, and
W.
Siripala
, “
Electrodeposited Cu2O homojunction solar cells: Fabrication of a cell of high short circuit photocurrent
,”
Sol. Energy Mater. Sol. Cells
157
,
881
886
(
2016
).
94.
A. F.
Qasrawi
and
A. A.
Hamarsheh
, “
Band offsets, electron affinities and optical dynamics at the CdBr2/SiO2 interfaces
,”
Optik
243
,
167467
(
2021
).
95.
K.
Naceur
et al, “
Study and optimization of Cu2O/AZO hetero-junction solar cell with different buffer layers
,”
Opt. Mater.
115
,
111060
(
2021
).
You do not currently have access to this content.