With the rapid development of renewable energy, the integration of multiple power sources into combined power generation systems has emerged as an efficient approach for the energy utilization. Pumped storage power stations, as large-capacity flexible energy storage equipment, play a crucial role in peak load shifting, valley filling, and the promotion of new energy consumption. This study focuses on the combined pumped storage-wind-photovoltaic-thermal generation system and addresses the challenges posed by fluctuating output of wind and photovoltaic sources. First, a K-means clustering analysis technology has been introduced to identify the typical daily scene output and load fluctuation patterns in an energy base in northwest China. Based on the operation constraints of each subsystem, aiming at the optimal comprehensive benefit, minimum generalized load fluctuation, and minimum carbon emission, an operation optimization scheduling model for the pumped storage-wind-photovoltaic-thermal combined power generation system has been established. When the optimization model has a configuration scale of 3000 MW for wind power and 2800 MW for photovoltaics, the pumped storage power station in the combined power generation system can achieve full pumping for 4 h and full generation for 5 h, which plays an obvious role in peak and valley regulation. Meanwhile, the combined system minimizes operating costs and carbon emissions, resulting in a minimum fluctuation of thermal power output by 6.6%. Furthermore, different capacity configurations demonstrate a non-linear relationship between the comprehensive benefits, carbon emissions, and the scene penetration rate. When prioritizing economic stability over carbon emissions, a thermal power capacity configuration of 7200 MW leads to the lowest total operating cost for the combined system, amounting to 26.38 million ¥. Results indicate that pumped storage effectively suppresses grid power fluctuations, promotes the consumption of renewable energy sources, and enhances the stability of thermal power output.

1.
Basu
,
M.
, “
Multi-region dynamic economic dispatch of solar–wind–hydro–thermal power system incorporating pumped hydro energy storage
,”
Eng. Appl. Artif. Intell.
86
,
182
196
(
2019
).
2.
Cui
,
D.
,
Xu
,
F.
,
Ge
,
W. C.
,
Huang
,
P. X.
, and
Zhou
,
Y. H.
, “
A coordinated dispatching model considering generation and operation reserve in wind power-photovoltaic-pumped storage system
,”
Energies
13
,
4834
(
2020
).
3.
Dong
,
F. G.
,
Hou
,
Y. Z.
, and
Zhang
,
W.
, “
Optimized allocation of renewable energy quota in Chinese provinces
,”
J. Renewable Sustainable Energy
15
(
2
),
025902
(
2023
).
4.
Gu
,
J.
,
Zheng
,
J. Y.
, and
Zhang
,
J.
, “
Research on the coupling coordination and prediction of industrial convergence and ecological environment in rural of China
,”
Front. Environ.
10
,
1014848
(
2022
).
5.
Guo
,
S.
,
He
,
Y.
,
Pei
,
H. J.
, and
Wu
,
S. Y.
, “
The multi-objective capacity optimization of wind-photovoltaic-thermal energy storage hybrid power system with electric heater
,”
Sol. Energy
195
,
138
149
(
2020
).
6.
Hosseinnia
,
H.
,
Modarresi
,
J.
, and
Nazarpour
,
D.
, “
Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program
,”
Energy
191
,
116553
(
2020
).
7.
Ju
,
L. W.
,
Tan
,
Q. L.
,
Lin
,
H. Y.
et al, “
A two-stage optimal coordinated scheduling strategy for micro energy grid integrating intermittent renewable energy sources considering multi-energy flexible conversion
,”
Energy
196
,
117078
(
2020
).
8.
Jung
,
S.
,
Kang
,
H.
,
Lee
,
M.
, and
Hong
,
T.
, “
An optimal scheduling model of an energy storage system with a photovoltaic system in residential buildings considering the economic and environmental aspects
,”
Energy Build.
209
,
109701
(
2020
).
9.
Lee
,
Y. R.
,
Kim
,
H. J.
, and
Kim
,
M. K.
, “
Optimal operation scheduling considering cycle aging of battery energy storage systems on stochastic unit commitments in microgrids
,”
Energies
14
(
2
),
470
(
2021
).
10.
Li
,
J. D.
,
Chen
,
S. J.
,
Wu
,
Y. Q.
et al, “
How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China
,”
Renewable Sustainable Energy Rev.
137
,
110626
(
2021
).
11.
Li
,
W.
,
Li
,
J. K.
,
Hu
,
Z. Z.
,
Li
,
S. W.
, and
Cha
,
P. W.
, “
A novel probabilistic approach to optimize stand-alone hybrid wind-photovoltaic renewable energy system
,”
Energies
13
(
8
),
4945
(
2020
).
12.
Li
,
Y.
,
Han
,
M.
,
Shahidehpour
,
M.
,
Li
,
J. Z.
, and
Long
,
C.
, “
Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response
,”
Appl. Energy
335
,
120749
(
2023
).
13.
Li
,
Y.
,
Li
,
O. T.
,
Wu
,
F.
,
Shi
,
L. J.
,
Ma
,
S. Y.
, and
Zhou
,
B. Y.
, “
Coordinated multi-objective capacity optimization of wind-photovoltaic-pumped storage hybrid system
,”
Energy Rep.
8
,
1303
1310
(
2022a
).
14.
Li
,
Y.
,
Wang
,
B.
,
Yang
,
Z.
,
Li
,
J. Z.
, and
Li
,
G. Q.
, “
Optimal scheduling of integrated demand response-enabled community-integrated energy systems in uncertain environments
,”
IEEE Trans. Ind. Appl.
58
(
2
),
2640
2651
(
2022b
).
15.
Liu
,
X. M.
,
Zhao
,
M.
,
Wei
,
Z. H
et al, “
Economic optimal scheduling of wind-photovoltaic-storage with electric vehicle microgrid based on quantum mayfly algorithm
,”
Appl. Sci.
12
(
17
),
8778
(
2022
).
16.
Lu
,
L.
,
Yuan
,
W. L.
,
Su
,
C. G.
,
Wang
,
P. L
et al, “
Optimization model for the short-term joint operation of a grid-connected wind-photovoltaic-hydro hybrid energy system with cascade hydropower plants
,”
Energy Convers. Manage.
236
,
114055
(
2021
).
17.
Lu
,
M. K.
,
Guan
,
J.
,
Wu
,
H. H.
,
Chen
,
H. Z
et al, “
Day-ahead optimal dispatching of multi-source power system
,”
Renewable Energy
183
,
435
446
(
2022
).
18.
Luo
,
Y. X.
,
Wang
,
Y. H.
,
Liu
,
C.
, and
Fan
,
L. D.
, “
Two-stage robust optimal scheduling of wind power-photovoltaic-thermal power-pumped storage combined system
,”
IET Renewable Power Gener.
16
,
2881
2891
(
2022
).
19.
Ma
,
C.
and
Liu
,
L.
, “
Optimal capacity configuration of hydro-wind-PV hybrid system and its coordinative operation rules considering the UHV transmission and reservoir operation requirements
,”
Renewable Energy
198
,
637
653
(
2022
).
20.
Ma
,
C.
,
Dong
,
S.
,
Lian
,
J. J.
, and
Pang
,
X. L.
, “
Multi-objective sizing of hybrid energy storage system for large-scale photovoltaic power generation system
,”
Sustainability
11
(
19
),
5441
(
2022
).
21.
Pullaguram
,
D.
,
Madani
,
R.
,
Altun
,
T.
, and
Davoudi
,
A.
, “
Small-signal stability-constrained optimal power flow for inverter dominant autonomous microgrids
,”
IEEE Trans. Ind. Electron.
69
(
7
),
7318
7328
(
2022
).
22.
Qian
,
H. Q.
,
Xu
,
S. D.
,
Cao
,
J.
et al, “
Air pollution reduction and climate co-benefits in China's industries
,”
Nat. Sustainability
4
(
5
),
417
(
2021
).
23.
Ren
,
G. R.
,
Wan
,
J.
,
Wang
,
W.
,
Liu
,
J. Z.
,
Hong
,
F.
, and
Yu
,
D. R.
, “
Quantitative insights into the differences of variability and intermittency between wind and solar resources on spatial and temporal scales in China
,”
J. Renewable Sustainable Energy
13
(
4
),
043307
(
2020
).
24.
Sharma
,
P.
,
Said
,
Z.
,
Kumar
,
A.
et al, “
Recent advances in machine learning research for nanofluid-based heat transfer in renewable energy system
,”
Energy Fuels
36
(
13
),
6626
6658
(
2022
).
25.
Sun
,
P. R.
,
Hao
,
X. J.
,
Wang
,
J.
,
Shen
,
D.
, and
Tian
,
L.
, “
Low-carbon economic operation for integrated energy system considering carbon trading mechanism
,”
Energy Sci. Eng.
9
(
11
),
2064
2078
(
2021
).
26.
Tan
,
Q. L.
,
Ding
,
Y. H.
,
Ye
,
Q.
,
Mei
,
S. F.
et al, “
Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading
,”
Appl. Energy
253
,
113598
(
2019
).
27.
Trevino-Martinez
,
S.
,
Sawhney
,
R.
, and
Shylo
,
O.
, “
Energy-carbon footprint optimization in sequence-dependent production scheduling
,”
Appl. Energy
315
,
118949
(
2022
).
28.
Wang
,
J.
,
Zhang
,
S. L.
, and
Zhang
,
Q. J.
, “
The relationship of renewable energy consumption to financial development and economic growth in China
,”
Renewable Energy
170
,
897
904
(
2021
).
29.
Wang
,
X.
,
Mei
,
Y.
,
Kong
,
Y.
et al, “
Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system
,”
Energy
134
,
813
839
(
2017
).
30.
Wen
,
X.
,
Sun
,
Y.
,
Tan
,
Q.
et al, “
Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit
,”
Appl. Energy
306
,
117968
(
2022
).
31.
Xia
,
S. W.
,
Ding
,
Z. H.
,
Du
,
T.
,
Zhang
,
D. Y.
,
Shahidehpour
,
M.
, and
Ding
,
T.
, “
Multitime scale coordinated scheduling for the combined system of wind Power, photovoltaic, thermal generator, hydro pumped storage, and batteries
,”
IEEE Trans. Ind. Appl.
56
(
3
),
2227
2237
(
2020
).
32.
Xiao
,
B.
,
Zhang
,
Y.
,
Han
,
J. L.
,
Liu
,
D. Y.
,
Wang
,
M. C.
, and
Yan
,
G. G.
, “
A multi-energy complementary coordinated dispatch method for integrated system of wind-photovoltaic-hydro-thermal-energy storage
,”
Int. Trans. Electr. Energy Syst.
29
(
7
),
12005
(
2019
).
33.
Xu
,
G. Q.
,
Feng
,
S. W.
,
Guo
,
S. C.
, and
Ye
,
X. L.
, “
The spatial-temporal evolution analysis of carbon emission of China's thermal power industry based on the three-stage SBM—DEA model
,”
Int. J. Clim. Change Strategies Manage.
15
(
2
),
247
263
(
2022a
).
34.
Xu
,
J. M.
,
Liu
,
A. F.
,
Qin
,
Y.
,
Xu
,
G. R.
, and
Tang
,
Y. B.
, “
Research on power system joint optimal generation scheduling based on improved balance optimizer
,”
Front. Energy Res.
10
,
958384
(
2022b
).
35.
Xu
,
L.
,
Hou
,
G. Y.
,
Taherian
,
H.
,
Song
,
Y.
,
Wang
,
Y. C.
, and
Moradi
,
L.
, “
Modeling and assessment of a novel solar-biomass based distributed multi-generation system
,”
J. Renewable Sustainable Energy
14
(
3
),
036301
(
2022c
).
36.
Xu
,
X.
,
Hu
,
W.
,
Cao
,
D.
et al, “
Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system
,”
Renewable Energy
147
,
1418
1431
(
2020
).
37.
Yang
,
X. L.
,
Chang
,
J. Q.
,
Zhang
,
Z. N.
,
Zhang
,
J. Q.
, and
Xu
,
G. Z.
, “
Integrated energy system optimal scheduling considering the comprehensive and flexible operation mode of pumping storage
,”
PLoS One
17
(
10
),
0275514
(
2022
).
38.
Zhang
,
Y.
,
Ma
,
C.
,
Yang
,
Y.
et al, “
Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind
,”
Energy
259
,
125012
(
2022
).
You do not currently have access to this content.