We use analytical and numerical methods to evaluate the daily beam energy received by some convex surfaces. Spherical, hemispherical, cylindrical, and semi-cylindrical convex surfaces with arbitrary tilt angles have been investigated and compared with a flat surface of unit area. Diffusive irradiations (sky and ground) were not considered. For hemispherical and semi-cylindrical surfaces, the optimal orientations at which the received beam energy is maximal were obtained for each day of the year. The dependence of the optimal tilt angle on the day of the year is qualitatively the same as for the flat surface. Clear sky condition has been assumed to hold in this work. It is shown that a flat surface per unit of its area receives highest beam energy among other convex surfaces whereas a sphere receives the least amount. Furthermore, the received daily beam energy per unit of the ground-occupied area has been calculated. In this case, a cylindrical surface with a range of values of radius to height ratio receives the highest amount of energy whereas a flat surface receives the least. This aspect becomes noticeable in places where there are some limits, e.g., land price or any other limitation on the available surface area.

1.
G. C.
King
,
Physics of Energy Sources
(
John Wiley and Sons, Ltd
,
2018
).
2.
J. A.
Duffie
and
W. A.
Beckman
,
Solar Engineering of Thermal Processes
,
4th ed.
(
John Wiley and Sons, Inc
.,
New Jersey
,
2013
).
3.
A.
Rabl
,
Active Solar Collectors and Their Applications
(
Oxford University Press
,
1985
).
4.
J.
Coventry
and
C.
Andraka
,
Sol. Energy
152
,
140
(
2017
).
5.
M.
Despotovic
and
V.
Nedic
, “
Comparison of optimum tilt angles of solar collectors determined at yearly, seasonal and monthly levels
,”
Energy Convers. Manage.
97
,
121
131
(
2015
).
6.
Concentrating Solar Power Technology
, edited by
K.
Lovegrove
and
W.
Stein
(Woodhead Publishing Limited
,
2012
).
7.
M. E.
Foulaadvand
,
A.
Aghamohammadi
,
P.
Karimi
, and
H.
Borzouei
, “
Flux profile at focal area of concentrating solar dishes
,”
Sci. Rep.
11
,
24474
(
2021
).
8.
J.
Appelbaum
and
A.
Aronescu
, “
Distribution of solar radiation on greenhouse convex rooftop
,”
Sustainability
12
(
17
),
7197
(
2020
).
9.
K.
Mahdi
and
N.
Bellel
, “
Development of a spherical solar collector with a cylindrical receiver
,”
Energy Procedia
52
,
438
448
(
2014
).
10.
A.
Noghrehabadi
,
E.
Hajidavaloo
,
M.
Moravej
, and
A.
Esmailinasab
, “
An experimental study of the thermal performance of the square and rhombic solar collectors
,”
Therm. Sci.
22
(
1 Part B
),
487
494
(
2018
).
11.
M.
Moravej
and
F.
Namdarnia
, “
Experimental investigation of the efficiency of a semi-spherical solar piping collector
,”
J. Renewable Energy Environ.
5
(
2
),
22
30
(
2018
).
12.
H. R.
Goshayeshi
and
M. R.
Safaei
, “
Effect of absorber plate surface shape and glass cover inclination angle on the performance of a passive solar still
,”
Int. J. Numer. Methods Heat Fluid Flow
30
(
6
),
3183
3198
(
2020
).
13.
S. A.
Kalogirou
,
Solar Energy Engineering Processes and Systems
,
2nd ed
. (
Elsevier
,
2014
).
14.
S. E.
Lachhab
,
A.
Bliya
,
E. M.
Alibrahmi
, and
L.
Dlimi
, “
Solar dome integration as technical new in water desalination: Case study Morocco region Rabat-Kenitra
,”
Eng. Solid Mech.
10
(
3
),
201
214
(
2022
).
15.
A.
Groenewolt
,
J.
Bakker
,
J.
Hofer
,
Z.
Nagy
, and
A.
Schlüter
, “
Methods for modelling and analysis of bendable photovoltaic modules on irregularly curved surfaces
,”
Int. J. Energy Environ. Eng.
7
,
261
271
(
2016
).
16.
J.
Appelbaum
,
M.
Crutchik
, and
A.
Aronescu
, “
Curved photovoltaic collectors-convex surface
,”
Sol. Energy
199
,
832
836
(
2020
).
17.
J.-B.
Charpentier
,
T.
Duigou
,
B.
Chambion
,
P.
Voarino
, and
F.
Chabuel
, “
Photovoltaic integration in curved parts: Mechanical limits and key parameters from a theoretical point of view
,”
Prog. Photvoltaics Res. Appl.
(published
2023
).
18.
B.
Samanta
and
K. R.
AI Balushi
, “
Estimation of incident radiation on a novel spherical solar collector
,”
Renewable Energy
14
(
1–4
),
241
247
(
1998
).
19.
A. A. B.
Elseragy
and
M. B.
Gadi
, “
Computer simulation of solar radiation received by curved roof in hot-arid regions
,” in
Eighth International IBPSA Conference Eindhoven
,
2003
.
20.
I.
Pelēce
,
U.
Iljins
, and
I.
Ziemelis
, “
Theoretical calculation of energy received by semi-spherical solar collector
,”
Agron. Res.
6
,
263
269
(
2008
).
21.
,
G. A.
Mashina
and
M. B.
Gadi
, “
Calculating direct solar radiation on vaulted roofs using a new computer technique
,” in
Proceeding of the International Conference on Computing in Civil and Building Engineering
(
Nottingham University Press
,
2010
).
22.
K.-C.
Lin
,
W.
Deng
,
J.
Gu
, and
C.
Ham
, “
Solar energy collection on a spherical surface
,”
Energy Environ. Eng.
2
(
2
),
48
54
(
2014
).
23.
M. H.
Naraghi
and
E.
Atef
, “
Optimum solar panel orientation and performance: A climatic data-driven metaheuristic approach
,”
Energies
15
,
624
(
2022
).
24.
M.
Shehadi
, “
Optimizing solar cooling systems
,”
Case Stud. Therm. Eng.
21
,
100663
(
2020
).
25.
G.
Lewis
, “
Optimum tilt of a solar collector
,”
Sol. Wind Technol.
4
(
3
),
407
410
(
1987
).
26.
L. E.
Hartley
,
J. A.
Martínez-Lozano
,
M. P.
Utrillas
,
F.
Tena
, and
R.
Pedrós
, “
The optimisation of the angle of inclination of a solar collector to maximize the incident solar radiation
,”
Renewable Energy
17
(
3
),
291
309
(
1999
).
27.
G.
Qiu
and
S. B.
Riffat
, “
Optimum tilt angle of solar collectors and its impact on performance
,”
Int. J. Ambient Energy
24
(
1
),
13
20
(
2003
).
28.
R.
Tang
and
T.
Wu
, “
Optimal tilt-angles for solar collectors used in China
,”
Appl. Energy
79
,
239
248
(
2004
).
29.
I. H.
Rowlands
,
B. P.
Kemery
, and
I.
Beausoleil-Morrison
, “
Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study
,”
Energy Policy
39
,
1397
1409
(
2011
).
30.
P.
Talebizadeh
,
M. A.
Mehrabian
, and
M.
Abdolzadeh
, “
Prediction of the optimum slope and surface azimuth angles using the Genetic Algorithm
,”
Energy Build.
43
,
2998
3005
(
2011
).
31.
E. A.
Handoyoa
and
D. I.
Prabowo
, “
The optimal tilt angle of a solar collector
,”
Energy Procedia
32
,
166
175
(
2013
).
32.
E.
Calabro
, “
An algorithm to determine the optimum tilt angle of a solar panel from global horizontal solar radiation
,”
J. Renewable Energy
2013
,
307547
.
33.
H.
Khorasanizadeh
,
K.
Mohammadi
, and
A.
Mostafaeipour
, “
Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran
,”
Energy Convers. Manag.
78
,
805
814
(
2014
).
34.
S.
Soulayman
and
W.
Sabbagh
, “
Optimum tilt angle at tropical region
,”
Int. J. Renewable Energy Dev.
4
,
48
54
(
2015
).
35.
A.
Sharma
,
M. A.
Kallioglu
,
A.
Awasthi
,
R.
Chauhan
,
G.
Fekete
, and
T.
Singh
, “
Correlation formulation for optimum tilt angle for maximizing the solar radiation on solar collector in the Western Himalayan region
,”
Case Stud. Therm. Eng.
26
,
101185
(
2021
).
36.
A. Z.
Hafeza
,
A.
Solimana
,
K. A.
El-Metwallya
, and
I. M.
Ismail
, “
Tilt and azimuth angles in solar energy applications—A review
,”
Renewable Sustainable Energy Rev.
77
,
147
168
(
2017
).
37.
H. C.
Hottel
, “
A simple model for estimating the transmittance direct solar radiation through clear atmospheres
,”
Sol. Energy
18
,
129
(
1976
).
38.
A.
Aghamohammadi
and
M. E.
Foulaadvand
, “
Efficiency comparison between tracking and optimally fixed flat plate solar collectors
,”
Sci. Rep.
13
,
12712
(
2023
).
You do not currently have access to this content.