Optimal thermo-economic integration of renewable energy sources with multi-generation energy systems is a prime research topic today. The present study proposes a multi-criteria evaluation method of such integration, based on combined heating and power (CHP), and combined cooling and power (CCP) scenarios, for three different solar intensities. Three novel solar-driven tri-generation systems are selected. They include different organic Rankine cycle (ORC) architectures and a Kalina cycle system (KCS) and a double-effect absorption refrigeration cycle as bottoming cycles. Evaluation of the tri-generation systems, both with and without the KCS system, indicates a performance improvement of up to 23% in various thermoeconomic characteristics when the KCS system is present. Selection of the suitable tri-generation system for each condition and optimization of the working fluid are carried out based on a multi-attribute decision-making method. P-xylene is found as the optimal organic working fluid for ORC and ORC (ORC integrated with internal heat exchanger) based systems, and benzene for the regenerative ORC-based system in both CHP and CCP scenarios. Multi-criteria analysis shows that ORC-based system outperforms other systems with net outranking flow of 0.44 (0.39) for CHP (CCP) application. The optimal configuration gives 95.6 M$ and 1.99 years for net present value and dynamic payback period, and 83.03% and 34.55% for energy and exergy efficiencies, respectively.

1.
See https://sdgs.un.org/goals/goal7 for “
Goal 7: Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for all Sustainable Development Goals, 2022
.”
2.
I.
Dincer
and
M. A.
Rosen
,
Exergy: Energy, Environment and Sustainable Development
(
Newnes
,
2012
).
3.
O. K.
Bishoge
,
L.
Zhang
, and
W. G.
Mushi
, “
The potential renewable energy for sustainable development in Tanzania: A review
,”
Clean Technol.
1
(
1
),
70
88
(
2018
).
4.
A.
Colantoni
,
M.
Villarini
,
V.
Marcantonio
,
F.
Gallucci
, and
M.
Cecchini
, “
Performance analysis of a small-scale ORC trigeneration system powered by the combustion of olive pomace
,”
Energies
12
(
12
),
2279
(
2019
).
5.
K.
Jamaluddin
,
S. R. W.
Alwi
,
Z. A.
Manan
, and
J. J.
Klemes
, “
Pinch analysis methodology for trigeneration with energy storage system design
,”
Chem. Eng. Trans.
70
,
1885
1890
(
2018
).
6.
T.
Güney
, “
Renewable energy, non-renewable energy and sustainable development
,”
Int. J. Sustainable Dev. World Ecol.
26
(
5
),
389
397
(
2019
).
7.
A.
Ghasemkhani
,
S.
Farahat
, and
M. M.
Naserian
, “
Thermodynamic investigation and optimization tri-generation system for the provision of power, heating, and cooling: A case study of Zahedan, Iran
,”
Int. J. Heat Technol.
36
(
3
),
904
912
(
2018
).
8.
M.
Villarini
,
R.
Tascioni
,
A.
Arteconi
, and
L.
Cioccolanti
, “
Influence of the incident radiation on the energy performance of two small-scale solar organic Rankine cycle trigenerative systems: A simulation analysis
,”
Appl. Energy
242
,
1176
1188
(
2019
).
9.
H.
Ahn
,
D.
Rim
, and
J. D.
Freihaut
, “
Performance assessment of hybrid chiller systems for combined cooling, heating and power production
,”
Appl. Energy
225
,
501
512
(
2018
).
10.
C.
Lahoud
,
J. A.
Asmar
, and
M.
Brouche
, “
Models of performance of a CCHP system integration
,”
AIP Conf. Proc.
2123
,
030022
(
2019
).
11.
J.
Qian
,
J.
Wu
,
L.
Yao
,
S.
Mahmut
, and
Q.
Zhang
, “
Comprehensive performance evaluation of wind-solar-CCHP system based on emergy analysis and multi-objective decision method
,”
Energy
230
,
120779
(
2021
).
12.
F. A.
Al-Sulaiman
, “
Energy and sizing analyses of parabolic trough solar collector integrated with steam and binary vapor cycles
,”
Energy
58
,
561
570
(
2013
).
13.
V.
Zare
and
A.
Moalemian
, “
Parabolic trough solar collectors integrated with a Kalina cycle for high temperature applications: Energy, exergy and economic analyses
,”
Energy Convers. Manage.
151
,
681
692
(
2017
).
14.
J.
Guo
,
X.
Huai
, and
Z.
Liu
, “
Performance investigation of parabolic trough solar receiver
,”
Appl. Therm. Eng.
95
,
357
364
(
2016
).
15.
P.
Li
,
J.
Li
,
G.
Pei
,
A.
Munir
, and
J.
Ji
, “
A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas
,”
Sol. Energy
127
,
136
146
(
2016
).
16.
P.
Colonna
,
E.
Casati
,
C.
Trapp
,
T.
Mathijssen
,
J.
Larjola
,
T.
Turunen-Saaresti
, and
A.
Uusitalo
, “
Organic Rankine cycle power systems: From the concept to current technology, applications, and an outlook to the future
,”
J. Eng. Gas Turbines Power
137
(
10
),
100801
(
2015
).
17.
A.
Elsayed
,
M.
Embaye
,
R.
Al-Dadah
,
S.
Mahmoud
, and
A.
Rezk
, “
Thermodynamic performance of Kalina cycle system 11 (KCS11): Feasibility of using alternative zeotropic mixtures
,”
Int. J. Low-Carbon Technol.
8
(
Suppl_1
),
i69
i78
(
2013
).
18.
Y.
Wang
,
Q.
Tang
,
M.
Wang
, and
X.
Feng
, “
Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery
,”
Energy Convers. Manage.
143
,
482
492
(
2017
).
19.
E. D.
Kerme
,
J.
Orfi
,
A. S.
Fung
,
E. M.
Salilih
,
S. U.-D.
Khan
,
H.
Alshehri
,
E.
Ali
, and
M.
Alrasheed
, “
Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system
,”
Energy
196
,
117150
(
2020
).
20.
E.
Bellos
,
C.
Tzivanidis
, and
K.
Torosian
, “
Energetic, exergetic and financial evaluation of a solar driven trigeneration system
,”
Therm. Sci. Eng. Prog.
7
,
99
106
(
2018
).
21.
L.
Zhao
,
Y.
Zhang
,
S.
Deng
,
J.
Ni
,
W.
Xu
,
M.
Ma
,
S.
Lin
, and
Z.
Yu
, “
Solar driven ORC-based CCHP: Comparative performance analysis between sequential and parallel system configurations
,”
Appl. Therm. Eng.
131
,
696
706
(
2018
).
22.
E.
Bellos
and
C.
Tzivanidis
, “
Optimization of a solar-driven trigeneration system with nanofluid-based parabolic trough collectors
,”
Energies
10
(
7
),
848
(
2017
).
23.
B.
Eisavi
,
S.
Khalilarya
,
A.
Chitsaz
, and
M. A.
Rosen
, “
Thermodynamic analysis of a novel combined cooling, heating and power system driven by solar energy
,”
Appl. Therm. Eng.
129
,
1219
1229
(
2018
).
24.
A. H.
Keshavarzzadeh
and
P.
Ahmadi
, “
Multi-objective techno-economic optimization of a solar based integrated energy system using various optimization methods
,”
Energy Convers. Manage.
196
,
196
210
(
2019
).
25.
M. A.
Haghghi
,
S. M.
Pesteei
,
A.
Chitsaz
, and
J.
Hosseinpour
, “
Thermodynamic investigation of a new combined cooling, heating, and power (CCHP) system driven by parabolic trough solar collectors (PTSCs): A case study
,”
Appl. Therm. Eng.
163
,
114329
(
2019
).
26.
M. A.
Haghghi
,
Z.
Mohammadi
,
S. M.
Pesteei
,
A.
Chitsaz
, and
K.
Parham
, “
Exergoeconomic evaluation of a system driven by parabolic trough solar collectors for combined cooling, heating, and power generation; a case study
,”
Energy
192
,
116594
(
2020
).
27.
X.
Zhang
,
M.
Cao
,
X.
Yang
,
H.
Guo
, and
J.
Wang
, “
Economic analysis of organic Rankine cycle using R123 and R245fa as working fluids and a demonstration project report
,”
Appl. Sci.
9
(
2
),
288
(
2019
).
28.
A.
Tozlu
,
B.
Gençaslan
, and
H.
Özcan
, “
Thermoeconomic analysis of a hybrid cogeneration plant with use of near-surface geothermal sources in Turkey
,”
Renewable Energy
176
,
237
250
(
2021
).
29.
O.
Arslan
and
D.
Kilic
, “
Concurrent optimization and 4E analysis of organic Rankine cycle power plant driven by parabolic trough collector for low-solar radiation zone
,”
Sustainable Energy Technol. Assess.
46
,
101230
(
2021
).
30.
P.
Pourmoghadam
,
M.
Farighi
,
F.
Pourfayaz
, and
A.
Kasaeian
, “
Annual transient analysis of energetic, exergetic, and economic performances of solar cascade organic Rankine cycles integrated with PCM-based thermal energy storage systems
,”
Case Stud. Therm. Eng.
28
,
101388
(
2021
).
31.
D.
Tiwari
,
A. F.
Sherwani
,
A.
Arora
, and
A.
Haleem
, “
Thermo-economic and multiobjective optimization of saturated and superheated organic Rankine cycle using a low-grade solar heat source
,”
J. Renewable Sustainable Energy
9
(
5
),
054701
(
2017
).
32.
M.
Ashouri
,
A. M. K.
Vandani
,
M.
Mehrpooya
,
M. H.
Ahmadi
, and
A.
Abdollahpour
, “
Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector
,”
Energy Convers. Manage.
105
,
1328
1339
(
2015
).
33.
A.
Modi
,
M. R.
Kaern
,
J. G.
Andreasen
, and
F.
Haglind
, “
Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant
,” in
Proceedings of the 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
(
2015
).
34.
A.
Al-Falahi
,
F.
Alobaid
, and
B.
Epple
, “
Design and thermo-economic comparisons of large scale solar absorption air conditioning cycles
,”
Case Stud. Therm. Eng.
22
,
100763
(
2020
).
35.
A.
Shirazi
,
R. A.
Taylor
,
S. D.
White
, and
G. L.
Morrison
, “
A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications
,”
Energy Convers. Manage.
114
,
258
277
(
2016
).
36.
X.
Zheng
,
R.
Shi
,
Y.
Wang
,
S.
You
,
H.
Zhang
,
J.
Xia
, and
S.
Wei
, “
Mathematical modeling and performance analysis of an integrated solar heating and cooling system driven by parabolic trough collector and double-effect absorption chiller
,”
Energy Build.
202
,
109400
(
2019
).
37.
A.
Zarei
,
S.
Akhavan
,
M. B.
Rabiee
, and
S.
Elahi
, “
Energy, exergy and economic analysis of a novel solar driven CCHP system powered by organic Rankine cycle and photovoltaic thermal collector
,”
Appl. Therm. Eng.
194
,
117091
(
2021
).
38.
A.
Abdelhay
,
H. S.
Fath
, and
S.
Nada
, “
Solar driven polygeneration system for power, desalination and cooling
,”
Energy
198
,
117341
(
2020
).
39.
C.
Tzivanidis
and
E.
Bellos
, “
A comparative study of solar-driven trigeneration systems for the building sector
,”
Energies
13
(
8
),
2074
(
2020
).
40.
S.
Tariq
,
U.
Safder
, and
C.
Yoo
, “
Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments
,”
Renewable Sustainable Energy Rev.
162
,
112445
(
2022
).
41.
K.
Chen
,
S.
Zheng
,
Y.
Du
,
G.
Fan
,
Y.
Dai
, and
H.
Chen
, “
Thermodynamic and economic comparison of novel parallel and serial combined cooling and power systems based on sCO2 cycle
,”
Energy
215
,
119008
(
2021
).
42.
H.
Montazerinejad
,
P.
Ahmadi
, and
Z.
Montazerinejad
, “
Advanced exergy, exergo-economic and exrgo-environmental analyses of a solar based trigeneration energy system
,”
Appl. Therm. Eng.
152
,
666
685
(
2019
).
43.
E. A.
Chadegani
,
M.
Sharifishourabi
, and
F.
Hajiarab
, “
Comprehensive assessment of a multi-generation system integrated with a desalination system: Modeling and analysing
,”
Energy Convers. Manage.
174
,
20
32
(
2018
).
44.
F.
Suleman
,
I.
Dincer
, and
M.
Agelin-Chaab
, “
Development of an integrated renewable energy system for multigeneration
,”
Energy
78
,
196
204
(
2014
).
45.
F.
Yilmaz
,
M.
Ozturk
, and
R.
Selbas
, “
Energy and exergy performance assessment of a novel solar-based integrated system with hydrogen production
,”
Int. J. Hydrogen Energy
44
(
34
),
18732
18743
(
2019
).
46.
J.
Freeman
,
K.
Hellgardt
, and
C. N.
Markides
, “
Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK
,”
Appl. Energy
186
,
291
303
(
2017
).
47.
C.
Tzivanidis
,
E.
Bellos
, and
K. A.
Antonopoulos
, “
Energetic and financial investigation of a stand-alone solar-thermal organic Rankine cycle power plant
,”
Energy Convers. Manage.
126
,
421
433
(
2016
).
48.
W.
Gao
,
H.
Li
,
G.
Xu
, and
Y.
Quan
, “
Working fluid selection and preliminary design of a solar organic Rankine cycle system
,”
Environ. Prog. Sustainable Energy
34
(
2
),
619
626
(
2015
).
49.
K.
Shahverdi
,
R.
Loni
,
B.
Ghobadian
,
M.
Monem
,
S.
Gohari
,
S.
Marofi
, and
G.
Najafi
, “
Energy harvesting using solar ORC system and Archimedes screw turbine (AST) combination with different refrigerant working fluids
,”
Energy Convers. Manage.
187
,
205
220
(
2019
).
50.
Z.
Wu
,
L.
Sha
,
X.
Yang
, and
Y.
Zhang
, “
Performance evaluation and working fluid selection of combined heat pump and power generation system (HP-PGs) using multi-objective optimization
,”
Energy Convers. Manage.
221
,
113164
(
2020
).
51.
C.
Zhang
,
J.
Lin
, and
Y.
Tan
, “
Parametric study and working fluid selection of the parallel type organic Rankine cycle and ejector heat pump combined cycle
,”
Sol. Energy
205
,
487
495
(
2020
).
52.
M. T.
Nasir
and
K. C.
Kim
, “
Working fluids selection and parametric optimization of an organic Rankine cycle coupled vapor compression cycle (ORC-VCC) for air conditioning using low grade heat
,”
Energy Build.
129
,
378
395
(
2016
).
53.
Z.
Aghaziarati
and
A. H.
Aghdam
, “
Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle
,”
Renewable Energy
164
,
1267
1283
(
2021
).
54.
A.
Atiz
,
H.
Karakilcik
,
M.
Erden
, and
M.
Karakilcik
, “
Assessment of power and hydrogen production performance of an integrated system based on middle-grade geothermal source and solar energy
,”
Int. J. Hydrogen Energy
46
(
1
),
272
288
(
2021
).
55.
X. X.
Xia
,
Z. Q.
Wang
,
Y. H.
Hu
, and
N. J.
Zhou
, “
A novel comprehensive evaluation methodology of organic Rankine cycle for parameters design and working fluid selection
,”
Appl. Therm. Eng.
143
,
283
292
(
2018
).
56.
Z.
Han
,
P.
Li
,
X.
Han
,
Z.
Mei
, and
Z.
Wang
, “
Thermo-economic performance analysis of a regenerative superheating organic Rankine cycle for waste heat recovery
,”
Energies
10
(
10
),
1593
(
2017
).
57.
Z.
Wang
,
Y.
Hu
,
X.
Xia
,
Q.
Zuo
,
B.
Zhao
, and
Z.
Li
, “
Thermo-economic selection criteria of working fluid used in dual-loop ORC for engine waste heat recovery by multi-objective optimization
,”
Energy
197
,
117053
(
2020
).
58.
Z.
Wang
,
X.
Xia
,
H.
Pan
,
Q.
Zuo
,
N.
Zhou
, and
B.
Xie
, “
Fluid selection and advanced exergy analysis of dual-loop ORC using zeotropic mixture
,”
Appl. Therm. Eng.
185
,
116423
(
2021
).
59.
Y.
Gu
and
Z.
Geng
, “
Comprehensive evaluation of supercritical power cycle system using non-azeotropic mixtures driven by medium-temperature solar heat source
,”
J. Renewable Sustainable Energy
10
(
6
),
064706
(
2018
).
60.
A.
Shirazi
,
R. A.
Taylor
,
G. L.
Morrison
, and
S. D.
White
, “
Solar-powered absorption chillers: A comprehensive and critical review
,”
Energy Convers. Manage.
171
,
59
81
(
2018
).
61.
H.
Price
,
E.
Lü pfert
,
D.
Kearney
,
E.
Zarza
,
G.
Cohen
,
R.
Gee
, and
R.
Mahoney
, “
Advances in parabolic trough solar power technology
,”
J. Sol. Energy Eng.
124
(
2
),
109
125
(
2002
).
62.
T.
Avanessian
and
M.
Ameri
, “
Energy, exergy, and economic analysis of single and double effect LiBr–H2O absorption chillers
,”
Energy Build.
73
,
26
36
(
2014
).
63.
E.
Bellos
and
C.
Tzivanidis
, “
Analytical expression of parabolic trough solar collector performance
,”
Designs
2
(
1
),
9
(
2018
).
64.
T.
Gogoi
and
P.
Hazarika
, “
Comparative assessment of four novel solar based triple effect absorption refrigeration systems integrated with organic Rankine and Kalina cycles
,”
Energy Convers. Manage.
226
,
113561
(
2020
).
65.
M.
Chavoshi
and
A.
Minaeian
, “
Exergy and exergoeconomic investigations of the secondary reflectors effect on the linear Fresnel concentrator applied to an organic Rankine cycle
,”
J. Renewable Sustainable Energy
13
(
3
),
033702
(
2021
).
66.
F. A.
Al-Sulaiman
,
I.
Dincer
, and
F.
Hamdullahpur
, “
Exergy modeling of a new solar driven trigeneration system
,”
Sol. Energy
85
(
9
),
2228
2243
(
2011
).
67.
E.
Bellos
,
C.
Tzivanidis
, and
K. A.
Antonopoulos
, “
Parametric investigation and optimization of an innovative trigeneration system
,”
Energy Convers. Manage.
127
,
515
525
(
2016
).
68.
M. J.
Dehghani
and
C. K.
Yoo
, “
Modeling and extensive analysis of the energy and economics of cooling, heat, and power trigeneration (CCHP) from textile wastewater for industrial low-grade heat recovery
,”
Energy Convers. Manage.
205
,
112451
(
2020
).
69.
P.
Ifaei
,
J.
Rashidi
, and
C.
Yoo
, “
Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillers. I. Energy and economic modelling and analysis
,”
Energy Convers. Manage.
123
,
610
624
(
2016
).
70.
B. H.
Gebreslassie
,
G.
Guillén-Gosálbez
,
L.
Jiménez
, and
D.
Boer
, “
Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment
,”
Appl. Energy
86
(
9
),
1712
1722
(
2009
).
71.
N.
Shokati
,
F.
Ranjbar
, and
M.
Yari
, “
Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study
,”
Renewable Energy
83
,
527
542
(
2015
).
72.
H.
Habibi
,
M.
Zoghi
,
A.
Chitsaz
, and
M.
Shamsaiee
, “
Thermo-economic performance evaluation and multi-objective optimization of a screw expander-based cascade Rankine cycle integrated with parabolic trough solar collector
,”
Appl. Therm. Eng.
180
,
115827
(
2020
).
73.
C.
Tzivanidis
and
E.
Bellos
, “
The use of parabolic trough collectors for solar cooling—A case study for Athens climate
,”
Case Stud. Therm. Eng.
8
,
403
413
(
2016
).
74.
S.
Wang
,
C.
Liu
,
C.
Zhang
,
X.
Xu
, and
Q.
Li
, “
Thermo-economic evaluations of dual pressure organic Rankine cycle (DPORC) driven by geothermal heat source
,”
J. Renewable Sustainable Energy
10
(
6
),
063901
(
2018
).
75.
H.
Chen
,
K.
Xue
,
Y.
Wu
,
G.
Xu
,
X.
Jin
, and
W.
Liu
, “
Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system
,”
Energy
214
,
119023
(
2021
).
76.
A. A.
Minea
,
Advances in New Heat Transfer Fluids: From Numerical to Experimental Techniques
(
CRC Press
,
2017
).
77.
S.
Wang
,
C.
Liu
,
Q.
Li
,
L.
Liu
,
E.
Huo
, and
C.
Zhang
, “
Selection principle of working fluid for organic Rankine cycle based on environmental benefits and economic performance
,”
Appl. Therm. Eng.
178
,
115598
(
2020
).
78.
A.
Meroni
,
J. G.
Andreasen
,
G.
Persico
, and
F.
Haglind
, “
Optimization of organic Rankine cycle power systems considering multistage axial turbine design
,”
Appl. Energy
209
,
339
354
(
2018
).
79.
P.
Varshil
and
D.
Deshmukh
, “
A comprehensive review of waste heat recovery from a diesel engine using organic Rankine cycle
,”
Energy Rep.
7
,
3951
3970
(
2021
).
80.
R.
Mondragon
,
N.
Navarrete
,
A.
Gimeno-Furio
,
L.
Hernandez
,
L.
Cabedo
, and
J.
Julia
,
Advances in New Heat Transfer Fluids From Numerical to Experimental Techniques
, Chapter 11: New High-Temperature Heat Transfer and Thermal Storage Molten Salt-Based Nanofluids Preparation, Stabilization, and Characterization (
Taylor and Francis Group, LLC
,
2017
).
81.
D.
Pejic
and
M.
Arsic
, “
Minimization and maximization of functions: Golden-section search in one dimension
,”
Exploring the DataFlow Supercomputing Paradigm: Example Algorithms for Selected Applications
(Springer,
2019
), pp.
55
90
.
82.
A.
Kumar
,
B.
Sah
,
A. R.
Singh
,
Y.
Deng
,
X.
He
,
P.
Kumar
, and
R.
Bansal
, “
A review of multi criteria decision making (MCDM) towards sustainable renewable energy development
,”
Renewable Sustainable Energy Rev.
69
,
596
609
(
2017
).
83.
Z.
Sun
,
C.
Liu
, and
S.
Wang
, “
Multi-objective decision framework for comprehensive assessment of organic Rankine cycle system
,”
J. Renewable Sustainable Energy
12
(
1
),
014702
(
2020
).
84.
J.
Liu
,
Z.
Wang
,
Y.
Yin
,
Y.
Li
, and
Y.
Lu
, “
Optimal selection of energy storage nodes based on improved cumulative prospect theory in China
,”
J. Renewable Sustainable Energy
12
(
6
),
064101
(
2020
).
85.
C.-N.
Wang
,
V. T.
Nguyen
,
H. T. N.
Thai
, and
D. H.
Duong
, “
Multi-criteria decision making (MCDM) approaches for solar power plant location selection in Viet Nam
,”
Energies
11
(
6
),
1504
(
2018
).
86.
C.
He
,
Q.
Zhang
,
J.
Ren
, and
Z.
Li
, “
Combined cooling heating and power systems: Sustainability assessment under uncertainties
,”
Energy
139
,
755
766
(
2017
).
87.
J.
Ren
, “
Multi-criteria decision making for the prioritization of energy systems under uncertainties after life cycle sustainability assessment
,”
Sustainable Prod. Consumption
16
,
45
57
(
2018
).
88.
S. M. E.
Saryazdi
,
F.
Rezaei
,
Y.
Saboohi
, and
F.
Sassani
, “
Multi-objective optimization of preheating system of natural gas pressure reduction station with turbo-expander through the application of waste heat recovery system
,”
Therm. Sci. Eng. Prog.
38
,
101509
(
2023
).
89.
M. A.
Khan
,
A.
Ali
, and
M.
Zakaria
, “
Analysis of power plants in China Pakistan economic corridor (CPEC): An application of analytic network process (ANP)
,”
J. Renewable Sustainable Energy
10
(
6
),
065905
(
2018
).
90.
K. J.
Chalvatzis
,
H.
Malekpoor
,
N.
Mishra
,
F.
Lettice
, and
S.
Choudhary
, “
Sustainable resource allocation for power generation: The role of big data in enabling interindustry architectural innovation
,”
Technol. Forecasting Social Change
144
,
381
393
(
2019
).
91.
M.
Yazdani
,
P.
Chatterjee
,
E. K.
Zavadskas
, and
D.
Streimikiene
, “
A novel integrated decision-making approach for the evaluation and selection of renewable energy technologies
,”
Clean Technol. Environ. Policy
20
,
403
420
(
2018
).
92.
R.
Alizadeh
,
L.
Soltanisehat
,
P. D.
Lund
, and
H.
Zamanisabzi
, “
Improving renewable energy policy planning and decision-making through a hybrid MCDM method
,”
Energy Policy
137
,
111174
(
2020
).
93.
E.
Ilbahar
,
S.
Cebi
, and
C.
Kahraman
, “
A state-of-the-art review on multi-attribute renewable energy decision making
,”
Energy Strategy Rev.
25
,
18
33
(
2019
).
94.
J.-P.
Brans
and
P.
Vincke
, “
Note—A preference ranking organisation method: The PROMETHEE method for multiple criteria decision-making
,”
Manage. Sci.
31
(
6
),
647
656
(
1985
).
95.
D.
Diakoulaki
and
F.
Karangelis
, “
Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece
,”
Renewable Sustainable Energy Rev.
11
(
4
),
716
727
(
2007
).
96.
M.
Goumas
and
V.
Lygerou
, “
An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects
,”
Eur. J. Oper. Res.
123
(
3
),
606
613
(
2000
).
97.
D.
Haralambopoulos
and
H.
Polatidis
, “
Renewable energy projects: Structuring a multi-criteria group decision-making framework
,”
Renewable Energy
28
(
6
),
961
973
(
2003
).
98.
R.
Madlener
,
K.
Kowalski
, and
S.
Stagl
, “
New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria
,”
Energy Policy
35
(
12
),
6060
6074
(
2007
).
99.
J.-J.
Wang
,
Y.-Y.
Jing
,
C.-F.
Zhang
, and
J.-H.
Zhao
, “
Review on multi-criteria decision analysis aid in sustainable energy decision-making
,”
Renewable Sustainable Energy Rev.
13
(
9
),
2263
2278
(
2009
).
100.
A.
Alinezhad
and
J.
Khalili
,
New Methods and Applications in Multiple Attribute Decision Making (MADM)
(
Springer
,
2019
).
101.
C.
Özkale
,
C.
Celik
,
A. C.
Turkmen
, and
E. S.
Cakmaz
, “
Decision analysis application intended for selection of a power plant running on renewable energy sources
,”
Renewable Sustainable Energy Rev.
70
,
1011
1021
(
2017
).
102.
A.
Khanlari
and
M.
Alhuyi Nazari
, “
A review on the applications of multi-criteria decision-making approaches for power plant site selection
,”
J. Therm. Anal. Calorim.
147
,
4473
4489
(
2021
).
103.
F.
Cavallaro
, “
Multi-criteria decision aid to assess concentrated solar thermal technologies
,”
Renewable Energy
34
(
7
),
1678
1685
(
2009
).
104.
E.
Strantzali
,
K.
Aravossis
, and
G. A.
Livanos
, “
Evaluation of future sustainable electricity generation alternatives: The case of a Greek island
,”
Renewable Sustainable Energy Rev.
76
,
775
787
(
2017
).
105.
H.-C.
Lee
and
C.-T.
Chang
, “
Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan
,”
Renewable Sustainable Energy Rev.
92
,
883
896
(
2018
).
106.
S.
Saraswat
and
A. K.
Digalwar
, “
Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon's entropy fuzzy multi-criteria decision approach
,”
Renewable Energy
171
,
58
74
(
2021
).
107.
I.
Ozsahin
,
D. U.
Ozsahin
, and
B.
Uzun
,
Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering
(
Academic Press
,
2021
).
108.
M.
Sahabuddin
and
I.
Khan
, “
Multi-criteria decision analysis methods for energy sector's sustainability assessment: Robustness analysis through criteria weight change
,”
Sustainable Energy Technol. Assess.
47
,
101380
(
2021
).
109.
S.
Safarian
and
F.
Aramoun
, “
Energy and exergy assessments of modified organic Rankine cycles (ORCs)
,”
Energy Rep.
1
,
1
7
(
2015
).
110.
J.
He
,
C.
Liu
,
X.
Xu
,
Y.
Li
,
S.
Wu
, and
J.
Xu
, “
Performance research on modified KCS (Kalina cycle system) 11 without throttle valve
,”
Energy
64
,
389
397
(
2014
).
You do not currently have access to this content.