A solid oxide electrolysis cell require high-temperature steam. However, using electricity to generate steam is highly energy intensive, and concentrated solar power is a good substitute for it. The authors of this study propose a solar steam generator with an enhanced capacity for heat transfer by installing a porous ceramic material inside it and using spray cooling technology. Currently used steam generators produce steam at a temperature that rarely reaches 700–1000 °C. The steam generator developed here can produce steam at a temperature of up to 800 °C by using concentrated solar power. Moreover, we tested two porous silicon carbide ceramic materials for use in the generator under various experimental conditions and investigated the effects of the irradiation power, rate of flow at the inlet, and porosity of the ceramic material (ranging from 70% to 85%) on its thermal performance. The results showed that the temperature at the outlets of steam generators equipped with the two kinds of ceramic materials increased as the irradiation power was increased from 2.3 to 4.6 kW, and their thermal efficiency increased from 17% to 65.5% as the rate of flow of water at the inlet was raised from 0.92 to 4.68 L/h. The thermal efficiency of the generator equipped with the ceramic with a low porosity (70%) was approximately 26% greater than that of the generator equipped with the ceramic with a high porosity (85%) at an irradiation power of 4.2 kW. When the solar simulator was suddenly turned off, the generator with the lower porosity was more resistant to interference. The results here provide an important reference for optimizing the steam generator.

1.
I.
Staffell
,
D.
Scamman
,
A. V.
Abad
,
P.
Balcombe
,
P. E.
Dodds
,
P.
Ekins
,
N.
Shah
, and
K. R.
Ward
, “
The role of hydrogen and fuel cells in the global energy system
,”
Energy Environ. Sci.
12
,
463
491
(
2019
).
2.
F. S.
Liu
,
T. P.
Wang
,
J. J.
Li
,
T.
Wei
,
Z. M.
Ye
,
D. H.
Dong
,
B.
Chen
,
Y. H.
Ling
, and
Z. P.
Shao
, “
Elevated-temperature bio-ethanol-assisted water electrolysis for efficient hydrogen production
,”
Chem. Eng. J.
434
,
134699
(
2022
).
3.
D.
Jang
,
J.
Kim
,
D.
Kim
,
W. B.
Han
, and
S.
Kang
, “
Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies
,”
Energy Convers. Manage.
258
,
115499
(
2022
).
4.
A. S.
Nielsen
,
M.
Ostadi
,
B.
Austbo
,
M.
Hillestad
,
G.
del Alamo
, and
O.
Burheim
, “
Enhancing the efficiency of power- and biomass-to-liquid fuel processes using fuel-assisted solid oxide electrolysis cells
,”
Fuel
321
,
123987
(
2022
).
5.
A. S.
Joshi
,
I.
Dincer
, and
B. V.
Reddy
, “
Exergetic assessment of solar hydrogen production methods
,”
Int. J. Hydrogen Energy
35
,
4901
4908
(
2010
).
6.
A. S.
Joshi
,
I.
Dincer
, and
B. V.
Reddy
, “
Solar hydrogen production: A comparative performance assessment
,”
Int. J. Hydrogen Energy
37
,
1852
1852
(
2012
).
7.
M. T.
Balta
,
O.
Kizilkan
, and
F.
Yilmaz
, “
Energy and exergy analyses of integrated hydrogen production system using high temperature steam electrolysis
,”
Int. J. Hydrogen Energy
41
,
8032
8041
(
2016
).
8.
R.
Daneshpour
and
M.
Mehrpooya
, “
Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production
,”
Energy Convers. Manage.
176
,
274
286
(
2018
).
9.
S. S.
Kaleibari
,
Y. P.
Zhang
, and
S.
Abanades
, “
Solar-driven high temperature hydrogen production via integrated spectrally split concentrated photovoltaics (SSCPV) and solar power tower
,”
Int. J. Hydrogen Energy
44
,
2519
2532
(
2019
).
10.
H. C.
Zhang
,
S. H.
Su
,
X. H.
Chen
,
G. X.
Lin
, and
J. C.
Chen
, “
Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production
,”
Int. J. Hydrogen Energy
38
,
4298
4307
(
2013
).
11.
M.
Lin
and
S.
Haussener
, “
Techno-economic modeling and optimization of solar-driven high-temperature electrolysis systems
,”
Sol. Energy
155
,
1389
1402
(
2017
).
12.
G.
Schiller
,
M.
Lang
,
P.
Szabo
,
N.
Monnerie
,
H.
von Storch
,
J.
Reinhold
, and
P.
Sundarraj
, “
Solar heat integrated solid oxide steam electrolysis for highly efficient hydrogen production
,”
J. Power Sources
416
,
72
78
(
2019
).
13.
Q. Q.
Zhang
,
Z. S.
Chang
,
M. K.
Fu
,
F. L.
Ting
, and
X.
Li
, “
Thermal performance analysis of an integrated solar reactor using solid oxide electrolysis cells (SOEC) for hydrogen production
,”
Energy Convers. Manage.
264
,
115762
(
2022
).
14.
R.
Ben-Zvi
,
M.
Epstein
, and
A.
Segal
, “
Simulation of an integrated steam generator for solar tower
,”
Sol. Energy
86
,
578
592
(
2012
).
15.
A. S.
Gudekar
,
A. S.
Jadhav
,
S. V.
Panse
,
J. B.
Joshi
, and
A. B.
Pandit
, “
Cost effective design of compound parabolic collector for steam generation
,”
Sol. Energy
90
,
43
50
(
2013
).
16.
Z. H.
Liu
,
G. D.
Tao
,
L.
Lu
, and
Q.
Wang
, “
A novel all-glass evacuated tubular solar steam generator with simplified CPC
,”
Energy Convers. Manage.
86
,
175
185
(
2014
).
17.
T. X.
Liu
,
Q. B.
Liu
,
D.
Xu
, and
J.
Sui
, “
Performance investigation of a new distributed energy system integrated a solar thermochemical process with chemical recuperation
,”
Appl. Therm. Eng.
119
,
387
395
(
2017
).
18.
Z. R.
Liao
,
C.
Xu
,
Y. X.
Ren
,
F.
Gao
,
X.
Ju
, and
X. Z.
Du
, “
Thermal analysis of a conceptual loop heat pipe for solar central receivers
,”
Energy
158
,
709
718
(
2018
).
19.
M.
Saghafifar
,
K.
Mohammadi
, and
K.
Powell
, “
Design and analysis of a dual-receiver direct steam generator solar power tower plant with a flexible heliostat field
,”
Sustainable Energy Technol. Assess.
39
,
100698
(
2020
).
20.
A.
Houaijia
,
S.
Breuer
,
D.
Thomey
,
C.
Brosig
,
J. P.
Sack
,
M.
Roeb
, and
C.
Sattler
, “
Solar hydrogen by high-temperature electrolysis: Flowsheeting and experimental analysis of a tube-type receiver concept for superheated steam production
,”
Energy Procedia
49
,
1960
1969
(
2014
).
21.
J.
Pye
,
J.
Coventry
,
F.
Venn
,
J.
Zapata
et al, “
Experimental testing of a high-flux cavity receiver
,” in
SolarPACES
,
2016
.
22.
J. K.
Swanepoel
,
W. G.
le Roux
,
A. S.
Lexmond
, and
J. P.
Meyer
, “
Helically coiled solar cavity receiver for micro-scale direct steam generation
,”
Appl. Therm. Eng.
185
,
116427
(
2021
).
23.
S. S.
Indira
,
C. A.
Vaithilingam
,
R.
Sivasubramanian
,
K. K.
Chong
,
K.
Narasingamurthi
, and
R.
Saidur
, “
Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study
,”
Renewable Energy
201
,
224
239
(
2022
).
24.
G.
Barreto
,
P.
Canhoto
, and
M.
Collares-Pereira
, “
Parametric analysis and optimisation of porous volumetric solar receivers made of open-cell SiC ceramic foam
,”
Energy
200
,
117476
(
2020
).
25.
S.
Dai
,
Z.
Chang
,
T.
Ma
,
L.
Wang
, and
X.
Li
, “
Experimental study on flux mapping for a novel 84 kWe high flux solar simulator
,”
Appl. Therm. Eng.
162
,
114319
(
2019
).
26.
International Association for the Properties of Water and Steam
,
Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
(
IAPWS Secretariat
,
2007
).
27.
Q.
Li
and
Q.
Zhang
, “
Experimental study on the influence of input solar flux, air flow rate, and absorber parameters on honeycomb ceramic air receiver performance
,”
J. Renewable Sustainable Energy
12
,
023701
(
2020
).
28.
S.
Mey-Cloutier
,
C.
Caliot
,
A.
Kribus
,
Y.
Gray
, and
G.
Flamant
, “
Experimental study of ceramic foams used as high temperature volumetric solar absorber
,”
Sol. Energy
136
,
226
235
(
2016
).
29.
B. Rohsenow,
Handbook of Heat Transfer Fundamentals
(McGraw-Hill Book Company,
1985
).
You do not currently have access to this content.