The input of a solar inverter depends on multiple factors: the solar resource, weather conditions, and control strategies. Traditional design calculations specify the maximum current either as 125% of the rated module current or as the maximum 3 h average current from hourly simulations over a typical year, neglecting extreme irradiance conditions: cloud enhancement events that usually last minutes. Inverter power-limiting control strategies usually prevent extreme events to cause strong currents at the inverter, but in some cases, they can fail, leading to high currents. In this study, we aim to report how frequent and strong these high currents could be. We use 10 years of 1 min data from seven stations across the United States to estimate the photovoltaic string output through modeling the short-circuit current I sc, and the maximum-power point current I mp, and compare them to traditional inverter design values. We consider different configurations: minutely to hourly resolution; 5 min to 3 h averaging time intervals; monofacial and bifacial modules (with a case of enhanced albedo); and 3 fixed-tilt angles and horizontal single-axis tracking. The bifacial modules with enhanced albedo lead to the highest currents for 1 min data, exceeding 3 h averages by 53% for I sc and 38% for I mp. The 3 h average maxima surpass the conservative 125% design rule for bifacial modules. Inverter ratings at either a 200% of the rated current or 1.55 times the 3 h maximum could withstand all events regardless of control strategies. In summary, for some locations it is prudent to compare current design rules to subhourly simulations to guarantee the fault-free operation of solar PV plants.

1.
International Energy Agency
,
Renewables 2021
(
International Energy Agency
,
2021
).
2.
L. R.
do Nascimento
,
T.
de Souza Viana
,
R. A.
Campos
, and
R.
Rüther
, “
Extreme solar overirradiance events: Occurrence and impacts on utility-scale photovoltaic power plants in Brazil
,”
Sol. Energy
186
,
370
381
(
2019
).
3.
Z. K.
Pecenak
,
F. A.
Mejia
,
B.
Kurtz
,
A.
Evan
, and
J.
Kleissl
, “
Simulating irradiance enhancement dependence on cloud optical depth and solar zenith angle
,”
Sol. Energy
136
,
675
681
(
2016
).
4.
G. H.
Yordanov
, “
A study of extreme overirradiance events for solar energy applications using NASA's I3RC Monte Carlo radiative transfer model
,”
Sol. Energy
122
,
954
965
(
2015
).
5.
M. A.
Zamalloa-Jara
,
M. Á.
Sevillano-Bendezú
,
C.
Ulbrich
,
G.
Nofuentes
,
R.
Grieseler
, and
J. A.
Töfflinger
, “
Overirradiance conditions and their impact on the spectral distribution at low- and mid-latitude sites
,”
Sol. Energy
259
,
99
106
(
2023
).
6.
C. A.
Gueymard
, “
Cloud and albedo enhancement impacts on solar irradiance using high-frequency measurements from thermopile and photodiode radiometers. Part 1: Impacts on global horizontal irradiance
,”
Sol. Energy
153
,
755
765
(
2017
).
7.
G. H.
Yordanov
,
O.-M.
Midtgård
,
T. O.
Saetre
,
H. K.
Nielsen
, and
L. E.
Norum
, “
Overirradiance (cloud enhancement) events at high latitudes
,” in
IEEE 38th Photovoltaic Specialists Conference (PVSC) Part 2
,
2012
.
8.
M.
Järvelä
and
S.
Valkealahti
, “
Operation of a PV power plant during overpower events caused by the cloud enhancement phenomenon
,”
Energies
13
,
2185
(
2020
).
9.
K.
Lappalainen
and
S.
Valkealahti
, “
Experimental observations about the cloud enhancement phenomenon on PV strings
,” in
8th World Conference on Photovoltaic Energy Conversion
(EU PVSEC,
2022
), pp.
1354
1358
.
10.
K.
Lappalainen
and
J.
Kleissl
, “
Analysis of the cloud enhancement phenomenon and its effects on photovoltaic generators based on cloud speed sensor measurements
,”
J. Renewable Sustainable Energy
12
,
043502
(
2020
).
11.
E.
Bellini
, “
New study claims PV industry is neglecting overirradiance issues
,” in
PV Magazine International
,
2023
.
12.
J.
Luoma
,
J.
Kleissl
, and
K.
Murray
, “
Optimal inverter sizing considering cloud enhancement
,”
Sol. Energy
86
,
421
429
(
2012
).
13.
M.
Zamora Zapata
,
E.
Wu
, and
J.
Kleissl
, “
Irradiance enhancement events in the coastal stratocumulus dissipation process
,” in
Solar World Congress
(
International Solar Energy Society
,
Santiago
,
Chile
,
2019
).
14.
L.
Toreti Scarabelot
,
G.
Arns Rampinelli
, and
C. R.
Rambo
, “
Overirradiance effect on the electrical performance of photovoltaic systems of different inverter sizing factors
,”
Sol. Energy
225
,
561
568
(
2021
).
15.
R.
Kharait
,
S.
Raju
,
A.
Parikh
,
M. A.
Mikofski
, and
J.
Newmiller
, “
Energy yield and clipping loss corrections for hourly inputs in climates with solar variability
,” in
47th IEEE Photovoltaic Specialists Conference (PVSC)
(IEEE,
2020
), pp.
1330
1334
.
16.
A.
Parikh
,
K.
Perry
,
K.
Anderson
,
W. B.
Hobbs
,
R.
Kharait
, and
M. A.
Mikofski
, “
Validation of subhourly clipping loss error corrections
,” in
IEEE 48th Photovoltaic Specialists Conference (PVSC)
(IEEE,
2021
), pp.
1670
1675
.
17.
K.
Anderson
and
K.
Perry
, “
Estimating subhourly inverter clipping loss from satellite-derived irradiance data
,” in
47th IEEE Photovoltaic Specialists Conference (PVSC)
(IEEE,
2020
), pp.
1433
1438
.
18.
C.
Ladd
, “
Simulating NEC voltage and current values
,”
SolarPro Magazine
11
(4),
12
18 (2018
).
19.
J.
Stein
,
C.
Reise
,
J. B.
Castro
,
G.
Friesen
,
G.
Maugeri
,
E.
Urrejola
, and
S.
Ranta
, “
Bifacial photovoltaic modules and systems: Experience and results from international research and pilot applications
,”
Technical Report No. SAND-2021-4835R
(
IEA
,
2021
).
20.
S.
Ayala Pelaez
,
C.
Deline
,
P.
Greenberg
,
J. S.
Stein
, and
R. K.
Kostuk
, “
Model and validation of single-axis tracking with bifacial PV
,”
IEEE J. Photovoltaics
9
,
715
721
(
2019
).
21.
LG,
Bifacial design guide
,”
Technical Report
No. CT-BF-GL-EN-F-70522 (LG Electronics, Inc.,
2017
).
22.
B.
Marion
, “
Albedo data sets for bifacial PV systems
,” in
47th IEEE Photovoltaic Specialists Conference (PVSC)
(IEEE,
2020
), pp.
0485
0489
.
23.
Calculating the additional energy yield of bifacial solar modules
,” SolarWorld White Paper No. SW9002US 160921 (
2016
).
24.
W. F.
Holmgren
,
C. W.
Hansen
, and
M. A.
Mikofski
, “
pvlib python: A python package for modeling solar energy systems
,”
J. Open Source Software
3
,
884
(
2018
).
25.
M. A.
Anoma
,
D.
Jacob
,
B. C.
Bourne
,
J. A.
Scholl
,
D. M.
Riley
, and
C. W.
Hansen
, “
View factor model and validation for bifacial PV and diffuse shade on single-axis trackers
,” in
IEEE 44th Photovoltaic Specialist Conference (PVSC)
(IEEE,
2017
), pp.
1549
1554
.
26.
A.
Castillejo-Cuberos
and
R.
Escobar
, “
Understanding solar resource variability: An in-depth analysis, using Chile as a case of study
,”
Renewable Sustainable Energy Rev.
120
,
109664
(
2020
).
27.
See https://gml.noaa.gov/aftp/data/radiation/surfrad/ to access solar irradiance data from the SURFRAD sites.
28.
M. Zamora Zapata, K. Lappalainen, A. Kankiewicz, and J. Kleissel (2023). “InverterEnhancement,” GitHub. https://github.com/mzamora/InverterEnhancement
You do not currently have access to this content.