To maximize the profitability of wind power plants, wind farms are often characterized by high wind turbine density leading to operations with reduced turbine spacing. As a consequence, the overall wind farm power capture is hindered by complex flow features associated with flow modifications induced by the various wind turbine rotors. In addition to the generation of wakes, the velocity of the incoming wind field can reduce due to the increased pressure in the proximity of a single turbine rotor (named induction); a similar effect occurs at the wind-farm level (global blockage), which can have a noticeable impact on power production. On the other hand, intra-wind-farm regions featuring increased velocity compared to the freestream (speedups) have also been observed, which can be a source for a potential power boost. To quantify these rotor-induced effects on the incoming wind velocity field, three profiling LiDARs and one scanning wind LiDAR were deployed both before and after the construction of an onshore wind turbine array. The different wind conditions are classified according to the ambient turbulence intensity and streamwise/spanwise spacing among wind turbines. The analysis of the mean velocity field reveals enhanced induction and speedup under stably stratified atmospheric conditions. Furthermore, a reduced horizontal area between adjacent turbines has a small impact on the induction zone but increases significantly the speedup between adjacent rotors.

1.
R.
Wiser
,
M.
Bolinger
,
B.
Hoen
,
D.
Millstein
,
J.
Rand
,
G.
Barbose
,
N.
Darghouth
,
W.
Gorman
,
S.
Jeong
, and
B.
Paulos
, “
Land-based wind market report: 2022 edition
,”
Report
[
Lawrence Berkeley National Lab. (LBNL)
,
Berkeley, CA
,
2022
].
2.
S.
Bouckaert
,
A. F.
Pales
,
C.
McGlade
,
U.
Remme
,
B.
Wanner
,
L.
Varro
,
D.
D'Ambrosio
, and
T.
Spencer
, “
Net zero by 2050: A roadmap for the global energy sector
,” Report of the International Energy Agency (
2021
).
3.
L.
Vermeer
,
J. N.
Sørensen
, and
A.
Crespo
, “
Wind turbine wake aerodynamics
,”
Prog. Aerosp. Sci.
39
,
467
510
(
2003
).
4.
S.
Letizia
,
L.
Zhan
, and
G. V.
Iungo
, “
LISBOA (LIDAR Statistical Barnes Objective Analysis) for optimal design of lidar scans and retrieval of wind statistics—Part 2: Applications to lidar measurements of wind turbine wakes
,”
Atmos. Meas. Tech.
14
,
2095
2113
(
2021
).
5.
L.
Zhan
,
S.
Letizia
, and
G. V.
Iungo
, “
Optimal tuning of engineering wake models through lidar measurements
,”
Wind Energy Sci.
5
,
1601
1622
(
2020
).
6.
P. H.
Alfredsson
and
A.
Segalini
, “
Introduction wind farms in complex terrains: An introduction
,”
Philos. Trans. R. Soc., A
375
,
20160096
(
2017
).
7.
J.
Garratt
, “
The internal boundary layer—A review
,”
Boundary-layer Meteorol.
50
,
171
203
(
1990
).
8.
P.
Moriarty
,
N.
Hamilton
,
M.
Debnath
,
T.
Herges
,
B.
Isom
,
J. K.
Lundquist
,
D.
Maniaci
,
B.
Naughton
,
R.
Pauly
,
J.
Roadman
et al, “
American wake experiment (awaken)
,”
Report
[
Lawrence Livermore National Lab. (LLNL)
,
Livermore, CA
,
2020
].
9.
N. G.
Nygaard
,
S. T.
Steen
,
L.
Poulsen
, and
J. G.
Pedersen
, “
Modelling cluster wakes and wind farm blockage
,”
J. Phys.: Conf. Ser.
1618
(
6
),
062072
(
2020
).
10.
D.
Medici
,
S.
Ivanell
,
J.-A.
Dahlberg
, and
P. H.
Alfredsson
, “
The upstream flow of a wind turbine: Blockage effect
,”
Wind Energy
14
,
691
697
(
2011
).
11.
L. P.
Chamorro
,
R. E.
Arndt
, and
F.
Sotiropoulos
, “
Turbulent flow properties around a staggered wind farm
,”
Boundary-Layer Meteorol.
141
,
349
367
(
2011
).
12.
S.
McTavish
,
D.
Feszty
, and
F.
Nitzsche
, “
A study of the performance benefits of closely-spaced lateral wind farm configurations
,”
Renewable Energy
59
,
128
135
(
2013
).
13.
S.
El-Asha
,
L.
Zhan
, and
G. V.
Iungo
, “
Quantification of power losses due to wind turbine wake interactions through scada, meteorological and wind lidar data
,”
Wind Energy
20
,
1823
1839
(
2017
).
14.
H.
Sun
,
X.
Gao
, and
H.
Yang
, “
A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect
,”
Renewable Sustainable Energy Rev.
132
,
110042
(
2020
).
15.
J.
Schneemann
,
F.
Theuer
,
A.
Rott
,
M.
Dörenkämper
, and
M.
Kühn
, “
Offshore wind farm global blockage measured with scanning lidar
,”
Wind Energy Sci.
6
,
521
538
(
2021
).
16.
A.
Segalini
and
J.-Å.
Dahlberg
, “
Blockage effects in wind farms
,”
Wind Energy
23
,
120
128
(
2020
).
17.
A.
Sebastiani
,
F.
Castellani
,
G.
Crasto
, and
A.
Segalini
, “
Data analysis and simulation of the lillgrund wind farm
,”
Wind Energy
24
,
634
648
(
2021
).
18.
J.
Bleeg
,
M.
Purcell
,
R.
Ruisi
, and
E.
Traiger
, “
Wind farm blockage and the consequences of neglecting its impact on energy production
,”
Energies
11
,
1609
(
2018
).
19.
J. M. I.
Strickland
and
R. J. A. M.
Stevens
, “
Investigating wind farm blockage in a neutral boundary layer using large-eddy simulations
,”
Eur. J. Mech.-B
95
,
303
314
(
2022
).
20.
J.
Bleeg
and
C.
Montavon
, “
Blockage effects in a single row of wind turbines
,”
J. Phys.: Conf. Ser.
2265
(
2
),
022001
(
2022
).
21.
M.
Sanchez Gomez
,
J. K.
Lundquist
,
J. D.
Mirocha
, and
R. S.
Arthur
, “
Investigating the physical mechanisms that modify wind plant blockage in stable boundary layers
,”
Wind Energy Sci. Discuss.
2023
,
1
28
.
22.
D.
Allaerts
and
J.
Meyers
, “
Boundary-layer development and gravity waves in conventionally neutral wind farms
,”
J. Fluid Mech.
814
,
95
130
(
2017
).
23.
C. L.
Archer
,
S.
Mirzaeisefat
, and
S.
Lee
, “
Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation
,”
Geophys. Res. Lett.
40
,
4963
4970
, https://doi.org/10.1002/grl.50911 (
2013
).
24.
R. J.
Stevens
,
D. F.
Gayme
, and
C.
Meneveau
, “
Large eddy simulation studies of the effects of alignment and wind farm length
,”
J. Renewable Sustainable Energy
6
,
023105
(
2014
).
25.
A. R.
Meyer Forsting
,
N.
Troldborg
, and
M.
Gaunaa
, “
The flow upstream of a row of aligned wind turbine rotors
,”
Wind Energy
20
,
63
77
(
2017
).
26.
S.
Letizia
and
G. V.
Iungo
, “
Pseudo-2D RANS: A LIDAR-driven mid-fidelity model for simulations of wind farm flows
,”
J. Renewable Sustainable Energy
14
,
023301
(
2022
).
27.
J.
Meyers
and
C.
Meneveau
, “
Optimal turbine spacing in fully developed wind farm boundary layers
,”
Wind Energy
15
,
305
317
(
2012
).
28.
R. J. A. M.
Stevens
, “
Dependence of optimal wind turbine spacing on wind farm length
,”
Wind Energy
19
,
651
663
(
2016
).
29.
G. V.
Iungo
,
Y.-T.
Wu
, and
F.
Porté-Agel
, “
Field measurements of wind turbine wakes with lidars
,”
J. Atmos. Oceanic Technol.
30
,
274
287
(
2013
).
30.
G. V.
Iungo
and
F.
Porté-Agel
, “
Volumetric lidar scanning of wind turbine wakes under convective and neutral atmospheric stability regimes
,”
J. Atmos. Oceanic Technol.
31
,
2035
2048
(
2014
).
31.
R. M.
Banta
,
Y. L.
Pichugina
,
W. A.
Brewer
,
J. K.
Lundquist
,
N. D.
Kelley
,
S. P.
Sandberg
,
R. J.
Alvarez
II
,
R. M.
Hardesty
, and
A. M.
Weickmann
, “
3D volumetric analysis of wind turbine wake properties in the atmosphere using high-resolution doppler lidar
,”
J. Atmos. Oceanic Technol.
32
,
904
914
(
2015
).
32.
E.
Machefaux
,
G. C.
Larsen
,
N.
Troldborg
,
M.
Gaunaa
, and
A.
Rettenmeier
, “
Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements
,”
Wind Energy
18
,
2085
2103
(
2015
).
33.
N.
Bodini
,
D.
Zardi
, and
J. K.
Lundquist
, “
Three-dimensional structure of wind turbine wakes as measured by scanning lidar
,”
Atmos. Meas. Tech.
10
,
2881
2896
(
2017
).
34.
F.
Carbajo Fuertes
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Wind turbine wake characterization with nacelle-mounted wind lidars for analytical wake model validation
,”
Remote sensing
10
,
668
(
2018
).
35.
E.
Simley
,
N.
Angelou
,
T.
Mikkelsen
,
M.
Sjöholm
,
J.
Mann
, and
L. Y.
Pao
, “
Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars
,”
J. Renewable Sustainable Energy
8
,
013301
(
2016
).
36.
K. B.
Howard
and
M.
Guala
, “
Upwind preview to a horizontal axis wind turbine: A wind tunnel and field-scale study
,”
Wind Energy
19
,
1371
1389
(
2016
).
37.
M.
Sanchez Gomez
,
J.
Lundquist
,
J.
Mirocha
,
R.
Arthur
,
D.
Munoz-Esparza
, and
R.
Robey
, “
Can lidars assess wind plant blockage in simple terrain? a wrf-les study
,”
J. Renewable Sustainable Energy
14
,
063303
(
2022
).
38.
C.
Jacquet
,
D.
Apgar
,
V.
Chauchan
,
R.
Storey
,
S.
Kern
, and
S.
Davoust
, “
Farm blockage model validation using pre and post construction lidar measurements
,” in
Journal of Physics: Conference Series
, Vol.
2265
(
2
) (
IOP Publishing
,
2022
) p.
022009
.
39.
S.
Letizia
,
C.
Moss
,
M.
Puccioni
,
C.
Jacquet
,
D.
Apgar
, and
G. V.
Iungo
, “
Effects of the thrust force induced by wind turbine rotors on the incoming wind field: A wind lidar experiment
,” in
Journal of Physics: Conference Series
, Vol.
2265
(
IOP Publishing
,
2022
) p.
022033
.
40.
C. F.
Moss
,
M.
Puccioni
,
R.
Maulik
,
C.
Jacquet
,
D.
Apgar
, and
G. V.
Iungo
, “
Profiling wind lidar measurements to quantify blockage for onshore wind turbines
,”
Under Rev. Wind Energy
(in press) (
2022
).
41.
S.
Letizia
,
L.
Zhan
, and
G. V.
Iungo
, “
Lisboa (lidar statistical barnes objective analysis) for optimal design of lidar scans and retrieval of wind statistics–part 1: Theoretical framework
,”
Atmos. Meas. Tech.
14
,
2065
2093
(
2021
).
42.
L.
Zhan
,
S.
Letizia
, and
G.
Valerio Iungo
, “
Lidar measurements for an onshore wind farm: Wake variability for different incoming wind speeds and atmospheric stability regimes
,”
Wind Energy
23
,
501
527
(
2020
).
43.
I. E.
Commission
, “
International standard iec 61400-1: Wind turbines-part 1: Design guidelines
,” Int. Electrotechnical Commission (IEC) (
2005
).
44.
A.
Sathe
,
J.
Mann
,
N.
Vasiljevic
, and
G.
Lea
, “
A six-beam method to measure turbulence statistics using ground-based wind lidars
,”
Atmos. Meas. Tech.
8
,
729
740
(
2015
).
45.
C. M.
Smith
,
R.
Barthelmie
, and
S.
Pryor
, “
In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles
,”
Environ. Res. Lett.
8
,
034006
(
2013
).
46.
I. E.
Commission
, “
Wind energy generation systems – part 12-1: Power performance measurements of electricity producing wind turbines
,”
Int. Electrotechnical Commission (IEC)
(
2017
).
47.
L.
Benedict
and
R.
Gould
, “
Towards better uncertainty estimates for turbulence statistics
,”
Experiments fluids
22
,
129
136
(
1996
).
48.
H.
Beck
and
M.
Kühn
, “
Dynamic data filtering of long-range doppler lidar wind speed measurements
,”
Remote Sens.
9
,
561
(
2017
).
49.
J.
D'Errico
, “
Inpaint nans
,” MATLAB Central File Exchange (
2004
).
50.
W.
Zhang
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Wind-turbine wakes in a convective boundary layer: A wind-tunnel study
,”
Boundary-layer meteorology
146
,
161
179
(
2013
).
51.
M.
Abkar
and
F.
Porté-Agel
, “
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
,”
Phys. fluids
27
,
035104
(
2015
).
52.
D. P.
Petersen
and
D.
Middleton
, “
Sampling and reconstruction of wave-number-limited functions in n-dimensional euclidean spaces
,”
Inf. control
5
,
279
323
(
1962
).
53.
J. C.
Kaimal
,
J. C. J.
Wyngaard
,
Y.
Izumi
, and
O. R.
Coté
, “
Spectral characteristics of surface-layer turbulence
,”
Quart. J. Roy. Meteorological Soc.
98
,
563
589
(
1972
).
54.
J.
Mann
, “
The spatial structure of neutral atmospheric surface-layer turbulence
,”
J. fluid mechanics
273
,
141
168
(
1994
).
55.
A.
Peña
,
S.-E.
Gryning
, and
J.
Mann
, “
On the length-scale of the wind profile
,”
Quart. J. Roy. Meteorological Soc.
136
,
2119
2131
(
2010
).
56.
P. J. M.
Clive
,
I.
Dinwoodie
, and
F.
Quail
, “
Direct measurement of wind turbine wakes using remote sensing
,” in
Proceedings of EWEA
,
2011
.
57.
J. J.
Trujillo
,
F.
Bingöl
,
G. C.
Larsen
,
J.
Mann
, and
M.
Kühn
, “
Light detection and ranging measurements of wake dynamics. part ii: Two-dimensional scanning
,”
Wind Energy
14
,
61
75
(
2011
).
58.
J. J.
Trujillo
,
J. K.
Seifert
,
I.
Würth
,
D.
Schlipf
, and
M.
Kühn
, “
Full-field assessment of wind turbine near-wake deviation in relation to yaw misalignment
,”
Wind Energy Sci.
1
,
41
53
(
2016
).
59.
E.
Machefaux
,
G. C.
Larsen
,
N.
Troldborg
,
K. S.
Hansen
,
N.
Angelou
,
T.
Mikkelsen
, and
J.
Mann
, “
Investigation of wake interaction using full-scale lidar measurements and large eddy simulation
,”
Wind Energy
19
,
1535
1551
(
2016
).
You do not currently have access to this content.