Wind energy plays a crucial role as a clean energy source in the electricity system. The unpredictability of wind power makes it more challenging to put into use in comparison to thermal power generation. Accurate wind power prediction algorithms are of great importance for allocation and deployment of wind power. In this paper, a novel time-series forecasting model, SCINet, is used for short-term wind power forecasting and achieves high forecasting accuracy. Furthermore, the addition of reversible instance normalization (RevIN) to SCINet effectively alleviates the shift problem that arises in time series forecasting tasks. This enhancement further improves the model's forecasting ability. Finally, this paper uses knowledge distillation to get a small model that could speed up the computing and save memory resources. The source code is available at https://github.com/raspnew/WPF.git.

1.
Global Wind Energy Council
, “
Global Wind Report 2023
,” Report (
Global Wind Energy Council
,
2023
); available at https://gwec.net/globalwindreport2023.
2.
R.
Tawn
and
J.
Browell
, “
A review of very short-term wind and solar power forecasting
,”
Renewable Sustainable Energy Rev.
153
,
111758
(
2022
).
3.
J.
Zhu
and
L.
Su
, “
Wind power forecasting based on new hybrid model with TCN residual modification
,”
Energy AI
10
,
100199
(
2022
).
4.
H.
Wang
,
K.
Song
, and
Y.
Cheng
, “
A hybrid forecasting model based on CNN and informer for short-term wind power
,”
Front. Energy Res.
9
,
788320
(
2022
).
5.
A. M.
Foley
,
P. G.
Leahy
,
A.
Marvuglia
et al, “
Current methods and advances in forecasting of wind power generation
,”
Renewable Energy
37
,
1
8
(
2012
).
6.
E.
Erdem
and
J.
Shi
, “
ARMA based approaches for forecasting the tuple of wind speed and direction
,”
Appl. Energy
88
,
1405
1414
(
2011
).
7.
P.
Louka
,
G.
Galanis
,
N.
Siebert
et al, “
Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering
,”
J. Wind Eng. Ind. Aerodyn.
96
,
2348
2362
(
2008
).
8.
X.
An
,
D.
Jiang
,
C.
Liu
et al, “
Wind farm power prediction based on wavelet decomposition and chaotic time series
,”
Expert Syst. Appl.
38
,
11280
11285
(
2011
).
9.
S.
Makridakis
,
E.
Spiliotis
, and
V.
Assimakopoulos
, “
Statistical and machine learning forecasting methods: Concerns and ways forward
,”
PLoS One
13
(
3
),
e0194889
(
2018
).
10.
J.
Chung
,
C.
Gulcehre
,
K.
Cho
et al, “
Empirical evaluation of gated recurrent neural networks on sequence modeling
,” arXiv:1412.3555 (
2014
).
11.
A.
Vaswani
,
N.
Shazeer
,
N.
Parmar
et al, “
Attention is all you need
,” in
31st Conference on Neural Information Processing Systems (NIPS 2017)
,
Long Beach, CA
,
2017
.
12.
J.
Devlin
,
M.
Chang
,
K.
Lee
et al, “
BERT: Pre-training of deep bidirectional transformers for language understanding
,” in
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019)
, Minneapolis, MN,
2019
.
13.
K.
He
,
X.
Chen
,
S.
Xie
,
Y.
Li
et al, “
Masked autoencoders are scalable vision learners
,” arXiv:2111.06377 (
2021
).
14.
H.
Zhou
,
S.
Zhang
,
J.
Li
et al, “
Informer: Beyond efficient transformer for long sequence time-series forecasting
,” in
35th AAAI Conference on Artificial Intelligence
,
2020
.
15.
S.
Bai
,
J.
Zhuang
,
B.
Gong
et al, “
An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
,” arXiv:1803.01271 (
2018
).
16.
X.
Pan
,
L.
Wang
,
Z.
Wang
et al, “
Short-term wind speed forecasting based on spatial-temporal graph transformer networks
,”
Energy
253
,
124095
(
2022
).
17.
M.
Khodayar
and
J.
Wang
, “
Spatio-temporal graph deep neural network for short-term wind speed forecasting
,”
IEEE Trans. Sustainable Energy
10
,
670
681
(
2019
).
18.
Y.
Wang
,
R.
Zou
,
F.
Liu
et al, “
A review of wind speed and wind power forecasting with deep neural networks
,”
Appl. Energy
304
,
117766
(
2021
).
19.
X.
Huang
and
A.
Jiang
, “
Wind power generation forecast based on multi-step informer network
,”
Energies
15
,
6642
(
2022
).
20.
Y.
Hong
and
C. L. P. P.
Rioflorido
, “
A hybrid deep learning-based neural network for 24-h ahead wind power forecasting
,”
Appl. Energy
250
,
530
539
(
2019
).
21.
H.
Shi
,
L.
Wang
,
R.
Scherer
et al, “
Short-term load forecasting based on AdaBelief optimized temporal convolutional network and gated recurrent unit hybrid neural network
,”
IEEE Access
9
,
66965
66981
(
2021
).
22.
H.
Nguyen
,
Q.
Phan
,
Y.
WU
et al, “
Multi-step wind power forecasting with stacked temporal convoluntional network (S-TCN)
,”
Energies
16
(
9
),
3792
(
2023
).
23.
H.
Luo
,
X.
Dou
,
R.
Sun
et al, “
A multi-step prediction method for wind power based on improved TCN to correct cumulative error
,”
Front. Energy Res.
9
,
723319
(
2021
).
24.
M.
Liu
,
A.
Zeng
,
M.
Chen
et al, “
SCINet: Time series modeling and forecasting with sample convolution and interaction
,” arXiv:2106.09305 (
2021
).
25.
E.
Mohammed
,
B.
Abdelhamid
,
L.
Mohammed
et al, “
Randomising the simple recurrent network: A lightweight, energy-efficient RNN model with application to forecasting problems
,”
Neural Comput. Appl.
35
,
19707
19718
(
2023
).
26.
D.
Zhai
,
Z.
Yan
, and
Y.
Xia
, “
Lightweight multiscale spatiotemporal locally connected graph convolutional networks for single human motion forecasting
,”
IEEE Trans. Autom. Sci. Eng.
330
,
1657
(
2023
).
27.
T.
Kim
,
J.
Kim
,
Y.
Tae
et al, “
Reversible instance normalization for accurate time-series forecasting against distribution shift
,” in
10th International Conference on Learning Representations (ICLR 2022)
,
2022
.
28.
S.
Han
,
J.
Pool
,
J.
Tran
et al, “
Learning both weights and connections for efficient neural networks
,” in
Advances in Neural Information Processing Systems
(
Neural Information Processing Systems Foundation
,
Montreal, QC, Canada
,
2015
), pp.
1135
1143
.
29.
M.
Denil
,
B.
Shakibi
,
L.
Dinh
et al, “
Predicting parameters in deep learning
,” arXiv:1306.0543v2 (
2014
).
30.
F. N.
Landola
,
S.
Han
,
M. W.
Moskewicz
et al, “
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
,” arXiv:1502.07360v4 (
2016
).
31.
G.
Hinton
,
O.
Vinyals
, and
J.
Dean
, “
Distilling the knowledge in a neural network
,” arXiv:1503.02531 (
2015
).
32.
G.
Chen
,
W.
Choi
,
X.
Yu
et al, “
Learning efficient object detection models with knowledge distillation
,” in
Advances in Neural Information Processing Systems
(Neural Information Processing Systems Foundation,
Long Beach, CA
,
2017
), Vol.
30
, pp.
743
752
.
33.
Kaggle
, (
2022
). “Wind power forecasting,” Kaggle. https://www.kaggle.com/datasets/theforcecoder/wind-power-forecasting
You do not currently have access to this content.