Wind turbine layout design has an important impact on the energy production and economic benefits of wind farms. The wind resource grid data include the realistic wind distributions of the wind farm. Combined with the Jensen wake model, it can be used to calculate the net production considering the wake effect of turbines. Based on the wind resource grid data and taking net energy production as the objective function, this paper proposes a random search algorithm for wind turbine layout optimization. The algorithm couples the random function with multiple optimization parameters and optimizes the wind turbine layout by considering restriction conditions of area and minimum turbine spacings. According to the results of the case study in an actual wind farm, the optimization processes using the proposed algorithm have high calculation efficiency and stability. The sensitivity analysis of parameters indicates that the effect of optimization calculation can be effectively improved by appropriately increasing the turbine coordinate searching range or the number of random operations within one single search.

1.
See https://wwindea.org/wwea-annual-report-2022/ for “
WWEA Annual Report
,
2022
.”
2.
F.
Fang
,
X.
Zhang
,
G.
Yao
et al, “
Assessment of the impact of wake interference within onshore and offshore wind farms based on mesoscale meteorological model analysis
,”
Proc. CSEE
42
(
13
),
4848
4859
(
2022
).
3.
H. D.
Nedjari
,
O.
Guerri
, and
M.
Saighi
, “
CFD wind turbines wake assessment in complex topography
,”
Energy Convers. Manage.
138
,
224
236
(
2017
).
4.
F.
Castellani
,
D.
Astolfi
,
M.
Mana
et al, “
Investigation of terrain and wake effects on the performance of wind farms in complex terrain using numerical and experimental data
,”
Wind Energy
20
(
7
),
1277
1289
(
2017
).
5.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
et al, “
Modelling and measuring flow and wind turbine wakes in large wind farms offshore
,”
Wind Energy
12
(
5
),
431
444
(
2010
).
6.
X.
Gao
,
T.
Wang
,
B.
Li
et al, “
Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data
,”
Appl. Energy
255
,
113816
(
2019
).
7.
Z.
Yang
,
J.
Li
,
Y.
Deng
et al, “
Study of influence of wind turbine wake on aerodynamic load
,”
Acta Energiae Solaris Sin.
6
(
9
),
2465
2470
(
2019
).
8.
Z.
Yang
,
B.
Gao
,
F.
Ye
et al, “
Maximum output optimal control of wind farm based on wake effect
,”
Electr. Power Constr.
38
(
4
),
96
102
(
2017
).
9.
J. S.
Gonzalez
,
M. B.
Payan
,
J. M. R.
Santos
et al, “
A review and recent developments in the optimal wind-turbine micro-siting problem
,”
Renewable Sustainable Energy Rev.
30
,
133
144
(
2014
).
10.
B.
Gu
,
H.
Hu
,
Y.
Liu
et al, “
Research on wind farm optimal control technology considering wake effect
,”
Acta Energiae Solaris Sin.
39
(
2
),
359
368
(
2018
).
11.
Q.
Liu
,
H.
Wang
,
C.
He
et al, “
Optimization of wind power distribution in low wind speed region based on wake effect
,”
Sci. Technol. Eng.
18
(
1
),
34
39
(
2018
).
12.
J.
Hu
,
Wind Turbine Wake Prediction and Wind Farm Layout Optimization
(
Beijing Jiaotong University
,
2017
).
13.
X.
Yang
, “
Overview of research on the simulation method and flow mechanism of a single horizontal-axis wind turbine wake
,”
Chin. J. Theor. Appl. Mech.
53
(
12
),
3169
3178
(
2021
).
14.
H.
Cao
,
M.
Zhang
,
Y.
Zhang
et al, “
A general model for trailing edge serrations simulation on wind turbine airfoils
,”
Theor. Appl. Mech. Lett.
11
(
4
),
100284
(
2021
).
15.
A.
Länger-Möller
, “
Impact of wall roughness and turbulence level on the performance of a horizontal axis wind turbine with the U-RANS solver THETA
,”
Wind Energy
22
(
4
),
523
537
(
2019
).
16.
I.
Katic
,
J.
Højstrup
, and
N. O.
Jensen
, “
A simple model for cluster efficiency
,” in
Proceedings of the European Wind Energy Association Conference and Exhibition
,
Rome, Italy
(DTU Library,
1986
), pp.
407
410
.
17.
J. F.
Herbert-Acero
,
O.
Probst
,
P.-E.
Réthoré
et al, “
A review of methodological approaches for the design and optimization of wind farms
,”
Energies
7
(
11
),
6930
7016
(
2014
).
18.
J.
Feng
and
W.
Shen
, “
Wind farm layout optimization in complex terrain: A preliminary study on a Gaussian Hill
,”
J. Phys.: Conf. Ser.
524
(
1
),
012146
(
2014
).
19.
J. J.
Thomas
,
S.
Mcomber
, and
A.
Ning
, “
Wake expansion continuation: Multi-modality reduction in the wind farm layout optimization problem
,”
Wind Energy
25
(
4
),
678
699
(
2022
).
20.
N.
Kirchner-Bossi
and
F.
Porté-Agel
, “
Realistic wind farm layout optimization through genetic algorithms using a Gaussian wake model
,”
Energies
11
,
3268
(
2018
).
21.
S.
Tao
,
S.
Kuenzel
,
Q.
Xu
et al, “
Optimal micro-siting of wind turbines in an offshore wind farm using Frandsen–Gaussian wake model
,”
IEEE Trans. Power Syst.
34
(
6
),
4944
4954
(
2019
).
22.
R.
Brogna
,
J.
Feng
,
J. N.
Srensen
et al, “
A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain
,”
Appl. Energy
259
,
114189
(
2020
).
23.
N.
Guo
,
M.
Zhang
,
B.
Li
et al, “
Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model
,”
J. Wind Eng. Ind. Aerodyn.
211
(
3
),
104548
(
2021
).
24.
R.
Shakoor
,
Y.-K.
Wu
et al, “
Wake effect modeling: A review of wind farm layout optimization using Jensen's model
,”
Renewable Sustainable Energy Rev.
58
,
1048
1059
(
2016
).
25.
G.
Mosetti
,
C.
Poloni
, and
B.
Diviacco
, “
Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm
,”
J. Wind Eng. Ind. Aerodyn.
51
(
1
),
105
116
(
1994
).
26.
F. M.
Gonzalez-Longatt
,
P.
Wall
,
P.
Regulski
et al, “
Optimal electric network design for a large offshore wind farm based on a modified genetic algorithm approach
,”
IEEE Syst. J.
6
(
1
),
164
172
(
2012
).
27.
C.
Ying
,
L.
Hua
,
J.
Kai
et al, “
Wind farm layout optimization using genetic algorithm with different hub height wind turbines
,”
Energy Convers. Manage.
70
(
7
),
56
65
(
2013
).
28.
S. A.
Grady
,
M. Y.
Hussaini
, and
M. M.
Abdullah
, “
Placement of wind turbines using genetic algorithms
,”
Renewable Energy
30
(
2
),
259
270
(
2014
).
29.
X.
Ju
and
F.
Liu
, “
Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation
,”
Appl. Energy
248
(
15
),
429
445
(
2019
).
30.
X.
Gao
,
H.
Yang
, and
L.
Lu
, “
Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model
,”
Appl. Energy
174
,
192
200
(
2016
).
31.
L.
Yang
,
Research on Optimized Layout of Wind Turbines in Wind Farm
(
Xi'an University of Technology
,
2020
).
32.
C.
Wan
,
J.
Wang
,
Y.
Geng
et al, “
Optimal micro-siting of wind farms by particle swarm optimization
,” in
Proceedings of the International Conference in Swarm Intelligence
(
Springer
,
Berlin, Heidelberg
,
2010
), pp.
198
205
.
33.
H.
Peng
,
W.
Hu
, and
C.
Zhe
, “
Optimisation for offshore wind farm cable connection layout using adaptive particle swarm optimisation minimum spanning tree method
,”
IET Renewable Power Gener.
10
(
5
),
694
702
(
2016
).
34.
X.
Tang
,
Q.
Yang
,
K.
Wang
et al, “
Optimisation of wind farm layout in complex terrain via mixed-installation of different types of turbines
,”
IET Renewable Power Gener.
12
(
9
),
1065
1073
(
2018
).
35.
J.
Feng
and
W. Z.
Shen
, “
Optimization of wind farm layout: A refinement method by random search
,” in
Proceedings of the International Conference on Aerodynamics of Offshore Wind Energy Systems and Wakes (ICOWES)
(
Technical University of Denmark
,
2013
).
36.
J.
Feng
and
W. Z.
Shen
, “
Solving the wind farm layout optimization problem using random search algorithm
,”
Renewable Energy
78
,
182
192
(
2015
).
37.
Y.
Eroglu
and
S. U.
Seckiner
, “
Design of wind farm layout using ant colony algorithm
,”
Renewable Energy
44
,
53
62
(
2012
).
38.
K.
Chen
,
M.
Song
,
X.
Zhang
et al, “
Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm
,”
Renewable Energy
96
,
676
686
(
2016
).
39.
H.
Gu
and
J.
Wang
, “
Irregular-shape wind farm micro-siting optimization
,”
Energy
57
(
8
),
535
544
(
2013
).
40.
Z.
Zhang
,
N.
Guo
,
K.
Yi
et al, “
Investigation of offshore wind farm layout optimization under geometric constraints
,”
Acta Energiae Solaris Sin.
44
(
2
),
116
122
(
2023
).
41.
Y.
Li
,
D.
Wu
,
C.
Hong
et al, “
Optimization of wind turbine layout in large-scale offshore wind farm
,”
Sol. Energy
310
(
2
),
67
74
(
2020
).
42.
N. G.
Mortensen
,
L.
Landberg
,
I. L.
Troen
et al,
Atlas Analysis and Application Program (WAsP)
(
Riso National Laboratory
,
Roskilde, Denmark
,
1993
).
43.
J.
Jin
,
L.
Ye
,
D.
Wu
et al, “
Review of wind energy assessment methods
,”
Electr. Power Constr.
38
(
4
),
1
8
(
2017
).
44.
J.
Kollwitz
, “
Defining the wake decay constant as a function of turbulence intensity to model wake losses in onshore wind farms
,” M.S. thesis,
Uppsala University
,
2016
.
45.
S.
Frandsen
, “
On the wind speed reduction in the center of large clusters of wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
39
(
1–3
),
251
265
(
1992
).
46.
H.
Sun
,
H.
Yang
, and
X.
Gao
, “
Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines
,”
Energy
78
(
168
),
637
650
(
2019
).
You do not currently have access to this content.