In this paper, the 10 kW WindQuest Vertical Axis Wind Turbine (VAWT) has been instrumented by strain gauges during its trials in the Ifremer in situ test site of Brest to study the effects of the structural dynamic response of the blades under operating conditions. Static and dynamic effects have been investigated as a function of the rotational speed when the rotor operates under stable wind conditions. The analysis segregates the influence of the gravitational, inertial, and aerodynamic loading components on the flapwise bending stress of the blades. The study of the cyclic variations on the blade strain at different Tip-Speed Ratios leads to the identification of the dynamic stall effect on the unsteady loads, while the spectral analysis describes the system eigenfrequencies excited by the interaction of the wind and the structure's motion. The results provide useful data to validate numerical models for VAWT blades with similar design and evaluate the structural fatigue.

1.
L.
Joyce
and
Z.
Feng
,
Global Wind Energy Report 2021
(
Global Wind Energy Council
,
2021
).
2.
IRENA
,
Renewable Power Generation Costs 2020, International Renewable Energy Agency
(
IRENA
,
Abu Dhabi
,
2021
).
3.
A.
Garcia-Teruel
,
G.
Rinaldi
,
P. R.
Thies
,
L.
Johanning
, and
H.
Jeffrey
, “
Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance
,”
Appl. Energy
307
,
118067
(
2022
).
4.
B.
Hand
,
G.
Kelly
, and
A.
Cashman
, “
Structural analysis of an offshore vertical axis wind turbine composite blade experiencing an extreme wind load
,”
Mar. Struct.
75
,
102858
(
2021
).
5.
M. M.
Elsakka
,
D. B.
Ingham
,
L.
Ma
, and
M.
Pourkashanian
, “
CFD analysis of the angle of attack for a vertical axis wind turbine blade
,”
Energy Convers. Manage.
182
,
154
165
(
2018
).
6.
N.
Rosado
,
L.
Ma
, and
D.
Ingham
, “
A critical analysis of the stall onset in the vertical axis wind turbines
,”
J. Wind Eng. Ind. Aerodyn.
204
,
104264
(
2020
).
7.
M. T.
Nguyen
,
F.
Balduzzi
,
A.
Bianchini
,
G.
Ferrara
, and
A.
Goude
, “
Evaluation of the unsteady aerodynamic forces acting on a vertical-axis turbine by means of numerical simulations and open site experiments
,”
J. Wind Eng. Ind. Aerodyn.
198
,
104093
(
2020
).
8.
A. N.
Gonçalves
,
J. M.
Pereira
, and
J. M.
Sousa
, “
Passive control of dynamic stall in a h-darrieus vertical axis wind turbine using blade leading-edge protuberances
,”
Appl. Energy
324
,
119700
(
2022
).
9.
Z.
Wang
and
M.
Zhuang
, “
Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios
,”
Appl. Energy
208
,
1184
1197
(
2017
).
10.
C.
Li
,
Y.
Xiao
,
Y.
Lin Xu
,
Y.
Xin Peng
,
G.
Hu
, and
S.
Zhu
, “
Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations
,”
Appl. Energy
212
,
1107
1125
(
2018
).
11.
A.
Rezaeiha
,
I.
Kalkman
, and
B.
Blocken
, “
Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine
,”
Appl. Energy
197
,
132
150
(
2017
).
12.
W.-H.
Chen
,
C.-Y.
Chen
,
C.-Y.
Huang
, and
C.-J.
Hwang
, “
Power output analysis and optimization of two straight-bladed vertical-axis wind turbines
,”
Appl. Energy
185
,
223
232
(
2017
).
13.
B. C.
Owens
and
D. T.
Griffith
, “
Aeroelastic stability investigations for large-scale vertical axis wind turbines
,”
J. Phys.: Conf. Ser.
524
,
012092
(
2014
).
14.
U. S.
Paulsen
,
H. A.
Madsen
,
J. H.
Hattel
,
I.
Baran
, and
P. H.
Nielsen
, “
Design optimization of a 5 MW floating offshore vertical-axis wind turbine
,”
Energy Procedia
35
,
22
32
(
2013
).
15.
L.
Weingarten
and
R.
Nickell
, “
Nonlinear stress analysis of vertical axis wind turbine blades
,”
Report No. SAND74-0378
(
Sandia National Laboratory
,
1975
).
16.
P.
Marsh
,
D.
Ranmuthugala
,
I.
Penesis
, and
G.
Thomas
, “
Numerical simulation of the loading characteristics of straight and helical-bladed vertical axis tidal turbines
,”
Renewable Energy
94
,
418
428
(
2016
).
17.
H. M.
Dodd
,
T. D.
Ashwill
,
D. E.
Berg
,
M. E.
Ralph
,
W. A.
Stephenson
, and
P. S.
Veers
, “
Test results and status of the DOE/Sandia 34-m VAWT test bed
,”
Report No. SAND-89-1535C
(
Sandia National Laboratory
,
1989
).
18.
Thomas D.
Ashwill
, “
Initial structural response measurements for the Sandia 34-Meter VAWT test bed
,” in
ASME, Gas Turbine and Aeroengine Congress and Exposition
,
1988
.
19.
L. C.
Pagnini
and
G.
Piccardo
, “
Modal properties of a vertical axis wind turbine in operating and parked conditions
,”
Eng. Struct.
242
,
112587
(
2021
).
20.
R. Coneau, “
Data analysis from experimental measurements on a vertical axis wind turbine
,” Masters Thesis (KTH School of Industrial Engineering and Management, 2017).
21.
N.
Najafi
and
U. S.
Paulsen
, “
Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique
,”
Energy
125
,
405
416
(
2017
).
22.
M.
Borg
and
M.
Collu
, “
Frequency-domain characteristics of aerodynamic loads of offshore floating vertical axis wind turbines
,”
Appl. Energy
155
,
629
636
(
2015
).
23.
C.
Matoug
,
B.
Augier
,
B.
Paillard
,
G.
Maurice
,
C.
Sicot
, and
S.
Barre
, “
An hybrid approach for the comparison of VAWT and HAWT performances for floating offshore wind turbines
,”
J. Phys.: Conf. Ser.
1618
(
3
),
032026
(
2020
).
24.
J.-L.
Achard
,
G.
Maurice
,
G.
Balarac
, and
S.
Barre
, “
Floating vertical axis wind turbine—OWLWIND project
,” in
International Conference on energy and environment (CIEM)
(
IEEE
,
Bucharest
,
2017
), pp.
216
220
.
25.
M.
Guilbot
,
S.
Barre
,
G.
Balarac
,
C.
Bonamy
, and
N.
Guillaud
, “
A numerical study of vertical axis wind turbine performances in twin-rotor configurations
,”
J. Phys.: Conf. Ser.
1618
(
5
),
052012
(
2020
).
26.
M.
Ahmadi-baloutaki
,
R.
Carriveau
, and
D. S-k
Ting
, “
A wind tunnel study on the aerodynamic interaction of vertical axis wind turbines in array configurations
,”
Renewable Energy
96
,
904
913
(
2016
).
27.
I. D.
Brownstein
,
M.
Kinzel
, and
J. O.
Dabiri
, “
Performance enhancement of downstream vertical-axis wind turbines
,”
J. Renewable Sustainable Energy
8
(
5
),
053306
(
2016
).
28.
M.
Träsch
,
N.
Raillard
,
V.
Perier
,
C.
Matoug
,
M. L.
Boulluec
, and
M.
Répécaud
, “
Metocean conditions at the Ifremer in situ test site in Brest
,” in
Proceedings of the 5th International Conference on Renewable Energies Offshore (RENEW 2018)
, November 8–10, 2022 (
Advances in Renewable Energies Offshore, Lisbon, Portugal
,
2022
).
29.
B.
LeBlanc
and
C.
Ferreira
, “
Estimation of blade loads for a variable pitch Vertical Axis Wind Turbine with strain gage measurements
,”
Wind Energy
25
,
1030
1045
(
2022
).
30.
Q.
Li
,
T.
Maeda
,
Y.
Kamada
,
J.
Murata
,
K.
Furukawa
, and
M.
Yamamoto
, “
The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine
,”
Energy
111
,
260
271
(
2016
).
31.
E.
Dyachuk
,
M.
Rossander
,
A.
Goude
, and
H.
Bernhoff
, “
Measurements of the aerodynamic normal forces on a 12-kW straight-bladed vertical axis wind turbine
,”
Energies
8
(
8
),
8482
8496
(
2015
).
32.
A.-J.
Buchner
,
J.
Soria
,
D.
Honnery
, and
A. J.
Smits
, “
Dynamic stall in vertical axis wind turbines: Scaling and topological considerations
,”
J. Fluid Mech.
841
,
746
766
(
2018
).
33.
A.
Laneville
and
P.
Vittecoq
, “
Dynamic stall: The case of the vertical axis wind turbine
,”
Trans. ASME
108
,
140
145
(
1986
).
34.
W. J.
McCroskey
, “
The phenomenon of dynamic stall
,” Technical Memorandum No. 19810011501 (NASA,
1981
).
35.
K.
Tsang
,
R.
So
,
R.
Leung
, and
X.
Wang
, “
Dynamic stall behavior from unsteady force measurements
,”
J. Fluids Struct.
24
(
1
),
129
150
(
2008
).
36.
N.
Rosado-hau
,
B.
Augier
,
B.
Paillard
,
M.
Träsch
, and
C.
Matoug
, “
The assessment of a fast computational method in predicting the unsteady loads of vertical axis wind turbines undergoing floating motion
,”
J. Wind Eng. Ind. Aerodyn.
240
,
105449
(
2023
).
You do not currently have access to this content.