This study investigated the potential of producing and upgrading bio-oil from plastic waste through a catalytic pyrolysis process. Plastic waste samples composed of polystyrene, polyethylene, and low-density polyethylene, shredded to sizes of 1.5–2.5 mm and blended in a ratio of 50/25/25, respectively, were pyrolyzed in a fluidized bed reactor at optimal conditions of 560–650 °C, a heating rate of 15 °C/min, and N2 gas flow rate of 100 ml/min in the presence of zeolite catalysts. The produced bio-oil was treated with fossil diesel, calcium hydroxide, and sodium sulfate to enhance its properties. The results showed that bio-oil production was increased to 65 wt. %, while char was reduced to 3.5 wt. %. Treatment with 20 wt. % diesel reduced bio-oil kinematic viscosity by 58% and improved stability from 20% to 50%. The addition of 16 g calcium hydroxide reduced the bio-oil acidity by 51% from a pH of 3.2–4.85. Furthermore, the bio-oil moisture content was reduced from 10 to 5.2 wt. % through the addition of 10 g of sodium sulfate, while the lower heating value was improved to 39.0 MJ/kg. Therefore, the catalytic pyrolysis of plastic waste in a fluidized bed reactor, and the various treatments performed on the generated bio-oil proved to be an effective technique to enhance the economic value of plastic waste and its environmental management at large.

1.
Abarca-Guerrero
,
L.
,
Maas
,
G.
, and
Hogland
,
W.
, “
Review Solid waste management challenges for cities in developing countries
,”
Waste Manage.
33
,
220
232
(
2013
).
2.
Abnisa
,
F.
, “
Enhanced liquid fuel production from pyrolysis of plastic
,”
Energies
16
,
1224
(
2023
).
3.
Alit
,
I. B.
,
Susana
,
I. G. B.
, and
Mara
,
I. M.
, “
Conversion of LDPE and PP plastic waste into fuel by pyrolysis method
,”
Global J. Eng. Technol. Adv.
10
(
3
)
73
78
(
2022
).
4.
Amrullah
,
A.
,
Obie
,
F.
,
Shofwatunnida
,
S.
, and
Satrio
,
J.
, “
Synergetic biofuel production from co-pyrolysis of food and plastic waste: Reaction kinetics and product behavior
,”
Heliyon
8
(
8
),
e10278
(
2022
).
5.
Anaga
,
E. S.
,
Oji
,
A. A.
, and
Okwonna
,
O. O.
, “
Bio-oil production from co-pyrolysis of rice husk and plastic waste
,”
EQA-Int. J. Environ. Qual.
54
(
1
),
27
35
(
2023
).
6.
Budsaereechai
,
S.
,
Hunt
,
A. J.
, and
Ngernyen
,
Y.
, “
Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines
,”
R. Soc. Chem. Adv.
9
,
5844
5857
(
2019
).
7.
Cai
,
W.
,
Kang
,
N.
,
Jang
,
M. K.
,
Sun
,
C.
,
Liu
,
R.
, and
Luo
,
Z.
, “
Long term storage stability of bio-oil from rice husk fast pyrolysis
,”
Energy
186
,
115882
(
2019
).
8.
Chen
,
D.
,
Zhou
,
J.
,
Zhang
,
Q.
, and
Zhu
,
X.
, “
Evaluation methods and research progresses in bio-oil storage stability
,”
Renewable Sustainable Energy Rev.
40
,
69
79
(
2014
).
9.
Dai
,
L.
,
Zhou
,
N.
,
Li
,
H.
,
Deng
,
W.
,
Cheng
,
Y.
,
Wang
,
Y.
,
Liu
,
Y.
,
Cobb
,
K.
,
Lei
,
H.
,
Chen
,
P.
, and
Ruan
,
R.
, “
Recent advances in improving lignocellulosic biomass-based bio-oil production
,”
J. Anal. Appl. Pyrolysis
149
,
104845
(
2020
).
10.
Dyer
,
A. C.
,
Nahil
,
M. A.
, and
Williams
,
P. T.
, “
Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil
,”
J. Energy Inst.
97
,
27
36
(
2021
).
11.
Geyer
,
R.
,
Jenna
,
R. J.
, and
Kara
,
L. L.
, “
Production, use, and fate of all plastics ever made
,”
Sci. Adv.
3
,
e1700782
(
2017
).
12.
Gin
,
A. W.
,
Hassan
,
H.
,
Ahmad
,
M. A.
,
Hameed
,
B. H.
, and
Din
,
A. T. M.
, “
Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: The influence of technical and reaction kinetic parameters
,”
Arabian J. Chem.
14
(
4
),
103035
(
2021
).
13.
Gupta
,
S.
,
Mondal
,
P.
,
Babu
,
V.
, and
Dalai
,
A. K.
, “
advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics. A comprehensive review
,”
Environ. Technol. Innovation
21
,
101276
(
2021
).
15.
Inayat
,
A.
,
Lisandra
,
M.
,
Chaouki
,
G.
,
Mohamed
,
A.
,
Abdallah
,
S.
,
Khadija
,
A.
,
Amna
,
A.
, and
Reem
,
A.
, “
Co-pyrolysis for bio-oil production via fixed bed reactor using date seeds and plastic waste as biomass
,”
Therm. Eng.
31
,
101841
(
2022
).
16.
IUCN-EA-QUANTIS, “National Guidance for plastic pollution hotspotting and shaping action,” Country Report Tanzania (
2020
).
17.
Jahirul
,
M. I.
,
Rasul
,
M. G.
,
Chowdhury
,
A. A.
, and
Ashwath
,
N.
, “
Biofuels production through biomass pyrolysis
,”
Energies
2012
,
4952
5001
.
18.
Khazaal
,
R. M.
and
Abdulaaima
,
D. A.
, “
Valuable oil recovery from plastic wastes via pressurized thermal and catalytic pyrolysis
,”
Energy Convers. Manage.
20
,
100430
(
2023
).
19.
Kumar Mishra
,
R.
and
Mohanty
,
K.
, “
Co-pyrolysis of waste biomass and waste plastics into renewable fuel and value-added chemicals
,”
Carbon Resour. Convers.
3
,
145
155
(
2020
).
20.
Kumar
,
S.
, “
Recovery of hydrocarbon liquid from waste high density polyethylene
,”
Braz. J. Chem. Eng.
28
,
659
667
(
2014
).
21.
Miandad
,
R.
,
Rehan
,
M.
,
Barakat
,
M. A.
,
Aburiazaiza
,
A. S.
,
Khan
,
H.
,
Ismail
,
I. M. I.
,
Dhavamani
,
J.
,
Gardy
,
J.
,
Hassanpour
,
A.
, and
Nizami
,
A.-S.
, “Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries,”
Front. Energy Res.
7
,
27
(
2019
).
22.
Muhammad
,
C.
, “
Pyrolysis-catalysis of plastic wastes for production of liquid fuels and chemicals
,”
J. Anal. Appl. Pyrolysis
113
,
332
339
(
2015
).
23.
Murat
,
B. I. S.
,
Kamalruzaman1
,
M. S.
,
Azman
,
M. H. N.
, and
Misroh
,
M. F.
, “
Assessment of mechanical properties of recycled HDPE and LDPE plastic wastes
,”
IOP Conf. Ser.: Mater. Sci. Eng.
957
,
012046
(
2020
).
24.
National Environmental Policy
, see https://www.vpo.go.tz/uploads/publications/en-1665473411-NATIONAL for “
Environmental Policy 2021
.”
25.
Oyeleke
,
O. O.
,
Ohunakin
,
O. S.
, and
Adelekan
,
D. S.
, “
Catalytic pyrolysis in waste to energy recovery application: A review
,”
IOP Conf. Ser.: Mater. Sci. Eng.
1107
,
012226
(
2021
).
26.
Pandey
,
U.
,
Stormyr
,
J. A.
,
Jaiswal
,
R.
,
Haugen
,
H. H.
, and
Moldestad
,
B. M. E.
, “
Pyrolysis of plastic waste to environmentally friendly products
,”
WIT Trans. Ecol. Environ.
246
,
61
74
(
2020
).
27.
Papari
,
S.
,
Bamdad
,
H.
, and
Berruti
,
F.
, “
Pyrolytic conversion of plastic waste to value-added products and fuels: A review
,”
Materials
14
(
10
),
2586
(
2021
).
28.
Papuga
,
S.
,
Djurdjevic
,
M.
,
Ciccioli
,
A.
, and
Ciprioti
,
S. V.
, “
Catalytic Pyrolysis of Plastic Waste and Molecular Symmetry Effects: A Review
,”
Symmetry
15
,
38
(
2023
).
29.
Plastic Europe
,
An Analysis of European Plastics Production, Demand and Waste Data
(
Plastic Europe
,
2018
).
30.
Richard
,
E. N.
,
Askwar
,
H.
,
Revocatus
,
L. M.
,
Karoli
,
N.
, and
Njau
,
R.
, “
Life cycle analysis of potential municipal solid wastes management scenarios in Tanzania: The case of Arusha, City
,”
Sustainable Environ. Res.
31
(
1
),
42
77
(
2021
).
31.
Salih
,
S. E.
,
Hamood1
,
A. F.
, and
Abd alsalam
,
A. H.
, “
Comparison of the Characteristics of LDPE: PP and HDPE: PP Polymer Blends
,”
Mod. Appl. Sci.
7
(
3
),
33
42
(
2013
).
32.
Saria
,
J. A. M.
, “
Assessment of human health hazard due to metal uptake via fish consumption from coastal area of Tanzania
,”
Ethiop. J. Environ. Stud. Manage.
10
(
4
),
555
565
(
2017
).
34.
Sutrisno
,
B.
,
Hidayat
,
A.
,
Wang
,
F.
, and
Hu
,
L. J.
, “
Study of co-pyrolysis process of biomass and plastic polymers for bio-oil production and upgradation
,”
J. Phys.: Conf. Ser.
2267
,
012010
(
2022
).
35.
The Global Plastic Treaty, see https://www.unep.org/news-and-stories/story/what-you-need-know-about-plastictreaty-negotiations-paris-week for “UN Environmental Programme, 2022.”
36.
Uzoejinwa
,
B. B.
,
He
,
X.
,
Wang
,
S.
,
El-Fatah Abomohra
,
A.
,
Hu
,
Y.
, and
Wang
,
Q.
, “
Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide
,”
Energy Convers. Manage.
163
,
468
492
(
2018
).
37.
Vijayakumar
,
A.
and
Sebastian
,
J.
, “
Pyrolysis process to produce fuel from different types of plastic—A review
,”
IOP Conf. Ser.: Mater. Sci. Eng.
396
,
012062
(
2018
).
38.
Wang
,
C.
,
Ding
,
H.
,
Zhang
,
Y.
, and
Zhu
,
X.
, “
Analysis of property variation and stability on the aging of bio-oil from fractional condensation
,”
Renewable Energy
148
,
720
728
(
2020
).
39.
Wang
,
S.
,
Kim
,
H.
,
Lee
,
D.
,
Lee
,
Y.
,
Won
,
Y.
,
Wook
,
B.
,
Nam
,
H.
,
Ryu
,
H.
, and
Lee
,
K.
, “
Drop-in fuel production with plastic waste pyrolysis oil over catalytic separation
,”
Fuel
305
,
121440
(
2021
).
40.
Zhang
,
L.
,
Bao
,
Z.
,
Xia
,
S.
,
Lu
,
Q.
, and
Walters
,
K. B.
, “
Catalytic pyrolysis of biomass and polymer wastes
,”
Catalysts
8
,
659
(
2018
).
41.
Zhou
,
B.
,
Sun
,
C.
, and
Yi
,
H.
, “
Solid waste disposal in Chinese cities: An evaluation of local performance
,”
Sustainability
9
(
12
),
2234
(
2017
).
You do not currently have access to this content.