Non-isothermal thermogravimetric experiments were carried out at four different heating rates to investigate thermal decomposition of Polyalthia longifolia leaves, with primary goals of determining kinetic triplets (activation energy, frequency factor, and reaction mechanism) and thermodynamic parameters. Kinetics investigation was conducted by utilizing five iso-conversional approaches, viz., Starink (STK), Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), differential Friedman method (DFM), and distributed activation energy model (DAEM). Results indicated that average activation energy (Eα) ranged between 211.57 and 231 kJ/mol. Average values of activation energy obtained by KAS (211.57 kJ/mol) were found to be in the neighborhood of that obtained by other three integral methods, i.e., OFW (210.80 kJ/mol), STK (211.80 kJ/mol), and DAEM (211.57 kJ/mol). Criado's master plots approach revealed that experimental data matches with none of the reaction model until conversion of 0.4 and thereafter follows D3 for conversion of 0.5–0.7, whereas master plots based on the integral form of data disclosed that this method is not appropriate for pyrolysis of the present biomass sample. Finally, pyrolysis of P. longifolia biomass to produce bioenergy is found to be feasible (Eα − ΔH = ∼5–6 kJ/mol).

1.
L.
Dai
,
N.
Zhou
,
H.
Li
,
W.
Deng
,
Y.
Cheng
,
Y.
Wang
,
Y.
Liu
,
K.
Cobb
,
H.
Lei
,
P.
Chen
, and
R.
Ruan
, “
Recent advances in improving lignocellulosic biomass-based bio-oil production
,”
J. Anal. Appl. Pyrolysis
149
,
104845
(
2020
).
2.
Z.
Hameed
,
Z.
Aman
,
S. R.
Naqvi
,
R.
Tariq
,
I.
Ali
, and
A. A.
Makki
, “
Kinetic and thermodynamic analyses of sugar cane bagasse and sewage sludge co-pyrolysis process
,”
Energy Fuels
32
(
9
),
9551
9558
(
2018
).
3.
R.
Bakari
,
T.
Kivevele
,
X.
Huang
, and
Y. A. C.
Jande
, “
Simulation and optimisation of the pyrolysis of rice husk: Preliminary assessment for gasification applications
,”
J. Anal. Appl. Pyrolysis
150
,
104891
(
2020
).
4.
S. R.
Naqvi
,
Y.
Uemura
,
S.
Yusup
,
N.
Nishiyama
, and
M.
Naqvi
, “
Catalytic consequences of micropore topology on biomass pyrolysis vapors over shape selective zeolites
,”
Energy Procedia
105
,
557
561
(
2017
).
5.
Y. X.
Pang
,
Y.
Yan
,
D. C. Y.
Foo
,
N.
Sharmin
,
H.
Zhao
,
E.
Lester
,
T.
Wu
, and
C. H.
Pang
, “
The influence of lignocellulose on biomass pyrolysis product distribution and economics via steady state process simulation
,”
J. Anal. Appl. Pyrolysis
158
,
104968
(
2021
).
6.
M.
Naqvi
,
J.
Yan
,
E.
Dahlquist
, and
S. R.
Naqvi
, “
Waste biomass gasification based off-grid electricity generation: A case study in Pakistan
,”
Energy Procedia
103
,
406
412
(
2016
).
7.
S. R.
Naqvi
,
Y.
Uemura
,
N.
Osman
, and
S.
Yusup
, “
Production and evaluation of physicochemical characteristics of paddy husk bio-char for its C sequestration applications
,”
BioEnergy Res.
8
(
4
),
1800
1809
(
2015
).
8.
O. A.
Fakayode
,
Z.
Wang
,
H.
Wahia
,
A. T.
Mustapha
,
C.
Zhou
, and
H.
Ma
, “
Higher heating value, exergy, pyrolysis kinetics and thermodynamic analysis of ultrasound-assisted deep eutectic solvent pretreated watermelon rind biomass
,”
Bioresour. Technol.
332
,
125040
(
2021
).
9.
M.
Morales
,
A.
Arvesen
, and
F.
Cherubini
, “
Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance
,”
Bioresour. Technol.
328
,
124833
(
2021
).
10.
R.
Agrawal
,
A.
Verma
,
R. R.
Singhania
,
S.
Varjani
,
C.
Di Dong
, and
A.
Kumar Patel
, “
Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis
,”
Bioresour. Technol.
332
,
125042
(
2021
).
11.
N.
Ghimire
,
R.
Bakke
, and
W. H.
Bergland
, “
Liquefaction of lignocellulosic biomass for methane production: A review
,”
Bioresour. Technol.
332
,
125068
(
2021
).
12.
N. N.
Deshavath
,
V. V.
Goud
, and
V. D.
Veeranki
, “
Liquefaction of lignocellulosic biomass through biochemical conversion pathway: A strategic approach to achieve an industrial titer of bioethanol
,”
Fuel
287
,
119545
(
2021
).
13.
H.
Kim
,
S.
Lee
,
B.
Lee
,
J.
Park
,
H.
Lim
, and
W.
Won
, “
Improving revenue from lignocellulosic biofuels: An integrated strategy for coproducing liquid transportation fuels and high value-added chemicals
,”
Fuel
287
,
119369
(
2021
).
14.
A. V.
Bridgwater
,
D.
Meier
, and
D.
Radlein
, “
An overview of fast pyrolysis of biomass
,”
Org. Geochem.
30
(
12
),
1479
1493
(
1999
).
15.
T.
Damartzis
,
D.
Vamvuka
,
S.
Sfakiotakis
, and
A.
Zabaniotou
, “
Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)
,”
Bioresour. Technol.
102
(
10
),
6230
6238
(
2011
).
16.
J. E.
Silva
,
G. Q.
Calixto
,
C. C.
de Almeida
,
D. M. A.
Melo
,
M. A. F.
Melo
,
J. C. O.
Freitas
, and
R. M.
Braga
, “
Energy potential and thermogravimetric study of pyrolysis kinetics of biomass wastes
,”
J. Therm. Anal. Calorim.
137
(
5
),
1635
1643
(
2019
).
17.
J. F.
Saldarriaga
,
R.
Aguado
,
A.
Pablos
,
M.
Amutio
,
M.
Olazar
, and
J.
Bilbao
, “
Fast characterization of biomass fuels by thermogravimetric analysis (TGA)
,”
Fuel
140
,
744
751
(
2015
).
18.
J.
Cai
,
Y.
He
,
X.
Yu
,
S. W.
Banks
,
Y.
Yang
,
X.
Zhang
,
Y.
Yu
,
R.
Liu
, and
A. V.
Bridgwater
, “
Review of physicochemical properties and analytical characterization of lignocellulosic biomass
,”
Renewable Sustainable Energy Rev.
76
,
309
(
2017
).
19.
Q.
Zhang
,
Q.
Li
,
L.
Zhang
,
Z.
Yu
,
X.
Jing
,
Z.
Wang
,
Y.
Fang
, and
W.
Huang
, “
Experimental study on co-pyrolysis and gasification of biomass with deoiled asphalt
,”
Energy
134
,
301
310
(
2017
).
20.
J.
Zsako
, “
Kinetic analysis of thermogravimetric data
,”
J. Phys. Chem.
72
(
7
),
2406
2411
(
1968
).
21.
L.
Hu
,
X.
Wei
,
F.
Zhang
,
H.
Lv
,
M.
Xu
, and
Z.
Zong
, “
Journal of analytical and applied pyrolysis effect of isopropanolysis on the structure variation and pyrolysis behaviors of Wucaiwan lignite
,”
J. Anal. Appl. Pyrolysis
154
,
105012
(
2021
).
22.
L.
Hu
,
X.
Wei
,
C.
Wang
,
M.
Xu
,
F.
Zhang
,
H.
Lv
, and
Z.
Zong
, “
Industrial crops and products insights into the influence of methanolysis on the physicochemical structure variation and pyrolysis reactivity of wheat straw
,”
Ind. Crop. Prod.
187
,
115495
(
2022
).
23.
L.
Hu
,
X.
Wei
,
X.
Guo
,
H.
Lv
, and
G.
Wang
, “
Journal of environmental chemical engineering investigation on the kinetic behavior, thermodynamic and volatile products analysis of chili straw waste pyrolysis
,”
J. Environ. Chem. Eng.
9
(
5
),
105859
(
2021
).
24.
R. K.
Singh
,
D.
Pandey
,
T.
Patil
, and
A. N.
Sawarkar
, “
Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses
,”
Bioresour. Technol.
310
,
123464
(
2020
).
25.
X.
Yuan
,
T.
He
,
H.
Cao
, and
Q.
Yuan
, “
Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods
,”
Renewable Energy
107
,
489
496
(
2017
).
26.
T.
Rasool
,
V. C.
Srivastava
, and
M. N. S.
Khan
, “
Kinetic and thermodynamic analysis of thermal decomposition of deodar (Cedrus deodara) saw dust and rice husk as potential feedstock for pyrolysis
,”
Int. J. Chem. React. Eng.
17
(
1
),
20170184
(
2019
).
27.
M.
Kumar
,
S.
Sabbarwal
,
P. K.
Mishra
, and
S. N.
Upadhyay
, “
Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies
,”
Bioresour. Technol.
279
,
262
270
(
2019
).
28.
K.
Açıkalın
, “
Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass
,”
Bioresour. Technol.
337
,
125438
(
2021
).
29.
H.
Hihu Muigai
,
B. J.
Choudhury
,
P.
Kalita
, and
V. S.
Moholkar
, “
Physico–chemical characterization and pyrolysis kinetics of Eichhornia crassipes, Thevetia peruviana, and Saccharum officinarum
,”
Fuel
289
,
119949
(
2021
).
30.
A.
Tabal
,
A.
Barakat
,
A.
Aboulkas
, and
K.
El harfi
, “
Pyrolysis of Ficus nitida wood: Determination of kinetic and thermodynamic parameters
,”
Fuel
283
,
119253
(
2021
).
31.
N.
Kirti
,
S. P.
Tekade
,
A.
Tagade
, and
A. N.
Sawarkar
, “
Pyrolysis of pigeon pea (Cajanus cajan) stalk: Kinetics and thermodynamic analysis of degradation stages via isoconversional and master plot methods
,”
Bioresour. Technol.
347
,
126440
(
2022
).
32.
V. O.
Santos
,
R. O.
Araujo
,
F. C. P.
Ribeiro
,
L. S.
Queiroz
,
M. N.
Guimarães
,
D.
Colpani
,
C. E. F.
da Costa
,
J. S.
Chaar
, and
L. K. C.
de Souza
, “
Non-isothermal kinetics evaluation of buriti and inaja seed biomass waste for pyrolysis thermochemical conversion technology
,”
Biomass Convers. Biorefin.
13
,
10893
(
2021
).
33.
R.
Kumar Singh
,
T.
Patil
,
D.
Pandey
, and
A. N.
Sawarkar
, “
Pyrolysis of mustard oil residue: A kinetic and thermodynamic study
,”
Bioresour. Technol.
339
,
125631
(
2021
).
34.
Y.
Xiang
,
Y.
Xiang
, and
L.
Wang
, “
Thermal decomposition kinetic of hybrid poplar sawdust as biomass to biofuel
,”
J. Environ. Chem. Eng.
4
(
3
),
3303
3308
(
2016
).
35.
J. L. F.
Alves
,
J. C. G.
da Silva
,
G. D.
Mumbach
,
M.
Di Domenico
,
A.
Bolzan
,
R. A. F.
Machado
, and
C.
Marangoni
, “
Evaluating the bioenergy potential of cupuassu shell through pyrolysis kinetics, thermodynamic parameters of activation, and evolved gas analysis with TG/FTIR technique
,”
Thermochim. Acta
711
,
179187
(
2022
).
36.
G. D.
Mumbach
,
J. L. F.
Alves
,
J. C. G.
da Silva
,
M.
Di Domenico
,
C.
Marangoni
,
R. A. F.
Machado
, and
A.
Bolzan
, “
Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles
,”
Renewable Energy
191
,
238
250
(
2022
).
37.
A. H.
Rony
,
L.
Kong
,
W.
Lu
,
M.
Dejam
,
H.
Adidharma
,
K. A. M.
Gasem
,
Y.
Zheng
,
U.
Norton
, and
M.
Fan
, “
Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis
,”
Bioresour. Technol.
284
,
466
473
(
2019
).
38.
C. T.
Chong
,
G. R.
Mong
,
J.-H.
Ng
,
W. W. F.
Chong
,
F. N.
Ani
,
S. S.
Lam
, and
H. C.
Ong
, “
Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis
,”
Energy Convers. Manage.
180
,
1260
1267
(
2019
).
39.
A.
Sriram
and
G.
Swaminathan
, “
Pyrolysis of Musa balbisiana flower petal using thermogravimetric studies
,”
Bioresour. Technol.
265
,
236
246
(
2018
).
40.
M. S.
Ahmad
,
M. A.
Mehmood
,
S. T. H.
Taqvi
,
A.
Elkamel
,
C. G.
Liu
,
J.
Xu
,
S. A.
Rahimuddin
, and
M.
Gull
, “
Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential
,”
Bioresour. Technol.
245
,
491
501
(
2017
).
41.
N.
Thejaswini
,
P. K. R.
Annapureddy
,
D.
Rammohan
, and
N.
Kishore
, “
Kinetics and thermodynamics of non‐isothermal pyrolysis of Terminalia chebula branches at different heating rates
,”
Int. J. Chem. Kinet.
2023
,
1
.
42.
M. F. S. A.
Aziz
and
Z. A.
Zakaria
,
Oil Palm Biomass and Its Kinetic Transformation Properties
(
Springer
,
2018
), pp.
73
87
.
43.
R. K.
Mishra
and
K.
Mohanty
, “
Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis
,”
Bioresour. Technol.
251
,
63
74
(
2018
).
44.
S.
Vyazovkin
, “
MODEL-FREE KINETICS staying free of multiplying entities without necessity
,”
J. Thermal Anal. Calorim.
83
,
45
(
2006
).
45.
S.
Vyazovkin
, “
Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project Ð the light at the end of the tunnel?
,”
Thermochim. Acta
355
,
155
(
2000
).
46.
A. O.
Aboyade
,
J. F.
Görgens
,
M.
Carrier
,
E. L.
Meyer
, and
J. H.
Knoetze
, “
Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues
,”
Fuel Process. Technol.
106
,
310
320
(
2013
).
47.
S.
Vyazovkin
and
N.
Sbirrazzuoli
, “
Isoconversional kinetic analysis of thermally stimulated processes in polymers
,”
Macromol. Rapid Commun.
27
(
18
),
1515
1532
(
2006
).
48.
S.
Vyazovkin
, “
Isoconversional kinetics of thermally stimulated processes
,” in
Handbook of Thermal Analysis and Calorimetry
(
Springer
,
2008
), Vol.
5
, pp.
503
538
.
49.
J. H.
Flynn
, “
The isoconversional method for determination of energy of activation at constant heating rates—Corrections for the Doyle approximation
,”
J. Therm. Anal.
27
(
1
),
95
102
(
1983
).
50.
H. E.
Kissinger
, “
Reaction kinetics in differential thermal analysis
,”
Anal. Chem.
29
(
11
),
1702
1706
(
1957
).
51.
K.
Miura
and
T.
Maki
, “
A simple method for estimating f (E) and k 0 (E) in the distributed activation energy model
,”
Energy Fuels
12
(
5
),
864
869
(
1998
).
52.
H. L.
Friedman
, “
Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic
,”
J. Polym. Sci., Part C: Polym. Symp.
6
(
1
),
183
195
(
2007
).
53.
M. J.
Starink
, “
The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods
,”
Thermochim. Acta
404
(
1–2
),
163
176
(
2003
).
54.
G. D.
Mumbach
,
J. L. F.
Alves
,
J. C. G.
Da Silva
,
R. F.
De Sena
,
C.
Marangoni
,
R. A. F.
Machado
, and
A.
Bolzan
, “
Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery
,”
Energy Convers. Manage.
200
,
112031
(
2019
).
55.
Y.
Xu
and
B.
Chen
, “
Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis
,”
Bioresour. Technol.
146
,
485
493
(
2013
).
56.
V.
Dhyani
and
T.
Bhaskar
,
Biomass, Biofuels, Biochemicals: Biofuels Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels
(
Elsevier
,
2019
), pp.
217
244
.
57.
F. J.
Gotor
,
J. M.
Criado
,
J.
Malek
, and
N.
Koga
, “
Kinetic analysis of solid-state reactions: The universality of master plots for analyzing isothermal and nonisothermal experiments
,”
J. Phys. Chem. A
104
(
46
),
10777
10782
(
2000
).
58.
J. M.
Criado
,
J.
Málek
, and
A.
Ortega
, “
Applicability of the master plots in kinetic analysis of non-isothermal data
,”
Thermochim. Acta
147
(
2
),
377
385
(
1989
).
59.
D.
Rammohan
,
N.
Kishore
, and
R. V. S.
Uppaluri
, “
Reaction kinetics and thermodynamic analysis of non-isothermal co-pyrolysis of Delonix regia and tube waste
,”
Bioresour. Technol. Rep.
18
,
10103
(
2022
).
60.
Z.
Shuping
,
W.
Yulong
,
Y.
Mingde
,
L.
Chun
, and
T.
Junmao
, “
Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer
,”
Bioresour. Technol.
101
(
1
),
359
365
(
2010
).
61.
G.
Ahmed
,
S.
Acharya
,
H.
Kawale
,
A.
Singh
,
N.
Kishore
, and
S.
Pal
, “
Thermochemical conversion of Polyalthia longifolia leaves at different temperatures and characterization of their products
,”
Fuel
280
,
118574
(
2020
).
62.
S.
Gupta
,
H. D.
Kawale
,
G.
Ahmed
,
S.
Acharya
, and
N.
Kishore
, “
Effect of temperature on catalytic pyrolysis of Polyalthia longifolia leaves solid waste and characterization of their products
,”
Curr. Res. Green Sustainable Chem.
4
,
100062
(
2021
).
63.
J. E.
White
,
W. J.
Catallo
, and
B. L.
Legendre
, “
Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies
,”
J. Anal. Appl. Pyrolysis
91
(
1
),
1
33
(
2011
).
64.
R. S.
Chutia
,
R.
Kataki
, and
T.
Bhaskar
, “
Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake
,”
Bioresour. Technol.
139
,
66
72
(
2013
).
65.
S.
Patnaik
,
S.
Kumar
, and
A. K.
Panda
, “
Thermal degradation of eco-friendly alternative plastics: Kinetics and thermodynamics analysis
,”
Environ. Sci. Pollut. Res.
27
(
13
),
14991
15000
(
2020
).
66.
D.
Rammohan
,
N.
Kishore
, and
R. V. S.
Uppaluri
, “
Insights on kinetic triplets and thermodynamic analysis of Delonix regia biomass pyrolysis
,”
Bioresour. Technol.
358
,
127375
(
2022
).
67.
M. A.
Lopez-Velazquez
,
V.
Santes
,
J.
Balmaseda
, and
E.
Torres-Garcia
, “
Pyrolysis of orange waste: A thermo-kinetic study
,”
J. Anal. Appl. Pyrolysis
99
,
170
177
(
2013
).
68.
M.
Amutio
,
G.
Lopez
,
R.
Aguado
,
M.
Artetxe
,
J.
Bilbao
, and
M.
Olazar
, “
Kinetic study of lignocellulosic biomass oxidative pyrolysis
,”
Fuel
95
,
305
311
(
2012
).
69.
N. V.
Santos
,
Z. M.
Magriotis
,
A. A.
Saczk
,
G. T. A.
Fássio
, and
S. S.
Vieira
, “
Kinetic study of pyrolysis of castor beans (Ricinus communis L.) presscake: An alternative use for solid waste arising from the biodiesel production
,”
Energy Fuels
29
(
4
),
2351
2357
(
2015
).
70.
H.
Alhumade
,
J. C. G.
da Silva
,
M. S.
Ahmad
,
G.
Çakman
,
A.
Yıldız
,
S.
Ceylan
, and
A.
Elkamel
, “
Investigation of pyrolysis kinetics and thermal behavior of invasive Reed Canary (Phalaris arundinacea) for bioenergy potential
,”
J. Anal. Appl. Pyrolysis
140
,
385
392
(
2019
).
71.
S.
Vyazovkin
,
A. K.
Burnham
,
J. M.
Criado
,
L. A.
Pérez-Maqueda
,
C.
Popescu
, and
N.
Sbirrazzuoli
, “
ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data
,”
Thermochim. Acta
520
(
1–2
),
1
19
(
2011
).
72.
C.
Gai
,
Y.
Dong
, and
T.
Zhang
, “
The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions
,”
Bioresour. Technol.
127
,
298
305
(
2013
).
73.
S.
Ceylan
and
Y.
Topçu
, “
Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis
,”
Bioresour. Technol.
156
,
182
188
(
2014
).
74.
E.
Torres-García
,
L. F.
Ramírez-Verduzco
, and
J.
Aburto
, “
Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion
,”
Waste Manage.
106
,
203
212
(
2020
).
75.
S. C.
Turmanova
,
S. D.
Genieva
,
A. S.
Dimitrova
, and
L. T.
Vlaev
, “
Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites
,”
Express Polym. Lett.
2
(
2
),
133
146
(
2008
).
76.
X.
Ming
,
F.
Xu
,
Y.
Jiang
,
P.
Zong
,
B.
Wang
,
J.
Li
,
Y.
Qiao
, and
Y.
Tian
, “
Thermal degradation of food waste by TG-FTIR and Py-GC/MS: Pyrolysis behaviors, products, kinetic and thermodynamic analysis
,”
J. Clean. Prod.
244
,
118713
(
2020
).
77.
R.
Kaur
,
P.
Gera
,
M. K.
Jha
, and
T.
Bhaskar
, “
Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis
,”
Bioresour. Technol.
250
,
422
428
(
2018
).
78.
A. A. D.
Maia
and
L. C.
de Morais
, “
Kinetic parameters of red pepper waste as biomass to solid biofuel
,”
Bioresour. Technol.
204
,
157
163
(
2016
).
79.
D.
Saha
,
A.
Sinha
,
S.
Pattanayak
, and
B.
Roy
, “
Pyrolysis kinetics and thermodynamic parameters of plastic grocery bag based on thermogravimetric data using iso-conversional methods
,”
Int. J. Environ. Sci. Technol.
19
(
1
),
391
406
(
2022
).
80.
D. E.
Daugaard
and
R. C.
Brown
, “
Enthalpy for pyrolysis for several types of biomass
,”
Energy Fuels
17
(
4
),
934
939
(
2003
).
81.
L. T.
Vlaev
,
V. G.
Georgieva
, and
S. D.
Genieva
, “
Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds
,”
J. Therm. Anal. Calorim.
88
(
3
),
805
812
(
2007
).
82.
W.
Tao
,
P.
Zhang
,
X.
Yang
,
H.
Li
,
Y.
Liu
, and
B.
Pan
, “
An integrated study on the pyrolysis mechanism of peanut shell based on the kinetic analysis and solid/gas characterization
,”
Bioresour. Technol.
329
,
124860
(
2021
).
83.
H.-X.
Yan
,
F.-F.
Hou
,
H.
Zhao
,
H.-N.
Wang
,
S.
Gao
,
M.
Wu
,
P.-Y.
Yu
,
J.-F.
Liu
,
N.
Li
,
Y.-W.
Sun
,
W.
Jiang
,
K.-X.
Fan
,
T.
He
, and
S.
Qin
, “
Pyrolysis kinetics of invasive coastal plant Spartina anglica using thermogravimetric analysis
,”
Energy Sources, Part A
38
(
19
),
2867
2875
(
2016
).
84.
H.
Li
,
N.
Zhou
,
L.
Dai
,
Y.
Cheng
,
K.
Cobb
,
P.
Chen
, and
R.
Ruan
, “
Effect of lime mud on the reaction kinetics and thermodynamics of biomass pyrolysis
,”
Bioresour. Technol.
310
,
123475
(
2020
).
85.
L.
Luo
,
Z.
Zhang
,
C.
Li
,
Nishu
,
F.
He
,
X.
Zhang
, and
J.
Cai
, “
Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis
,”
Energy
233
,
121194
(
2021
).
86.
P. E.
Sánchez-Jiménez
,
L. A.
Pérez-Maqueda
,
A.
Perejón
, and
J. M.
Criado
, “
Generalized master plots as a straightforward approach for determining the kinetic model: The case of cellulose pyrolysis
,”
Thermochim. Acta
552
,
54
59
(
2013
).
87.
S.
Wang
,
G.
Dai
,
H.
Yang
, and
Z.
Luo
, “
Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review
,”
Prog. Energy Combust. Sci.
62
,
33
86
(
2017
).
You do not currently have access to this content.