As the global demand for energy continues to increase, floating photovoltaic (FPV) power is gaining more attention as a promising clean energy source. This paper summarizes the unique advantages of FPV, such as its freedom from land restrictions, higher energy output, and potential integration with other forms of energy. However, FPV also faces challenges due to complex and harsh environmental conditions such as wind, waves, corrosion, and biological fouling. Therefore, the integrated mechanism design and the use of lightweight hydrophobic materials are crucial for ensuring the safety and stability of FPV systems under such conditions. This article also highlights certain key design points and optimization techniques that can improve the structural reliability of FPV systems. With continuous technological advancements and the accumulation of experience, the production efficiency of FPV has improved, leading to the expansion of FPV projects and a reduction in investment costs. As a result, the development of FPV has been accelerating globally, with numerous high-capacity projects being constructed. Building upon the previous literature reviews, this paper provides a concise review of the latest FPV case studies, innovative technologies, challenges in marine environments, economic costs, and market prospects from various perspectives. The primary objective is to encourage further research and application in the field of FPV.

1.
M. S.
Guney
, “
Solar power and application methods
,”
Renewable Sustainable Energy Rev.
57
,
776
785
(
2016
).
2.
A.
Ghosh
, “
Diffuse transmission dominant smart and advanced windows for less energy-hungry building: A review
,”
J. Build. Eng.
64
,
105604
(
2023
).
3.
I.
Kougias
,
N.
Taylor
,
G.
Kakoulaki
, and
A.
Jäger-Waldau
, “
The role of photovoltaics for the European Green Deal and the recovery plan
,”
Renewable Sustainable Energy Rev.
144
,
111017
(
2021
).
4.
T.
Khatib
,
A.
Mohamed
, and
K.
Sopian
, “
A review of solar energy modeling techniques
,”
Renewable Sustainable Energy Rev.
16
,
2864
2869
(
2012
).
5.
S. K.
Nag
,
T. K.
Gangopadhyay
, and
J.
Paserba
, “
Solar photovoltaics: A brief history of technologies [history]
,”
IEEE Power Energy Mag.
20
,
77
85
(
2022
).
6.
K.
Trapani
and
D. L.
Millar
, “
Proposing offshore photovoltaic (PV) technology to the energy mix of the Maltese islands
,”
Energy Convers, Manage.
67
,
18
26
(
2013
).
7.
B. Z.
Taye
,
A. H.
Nebey
,
T. G.
Workineh
, and
A.
Honrubia-Escribano
, “
Design of floating solar PV system for typical household on Debre Mariam Island
,”
Cogent Eng.
7
,
1829275
(
2020
).
8.
Z.
Wang
,
R.
Carriveau
,
D. S. K.
Ting
,
W.
Xiong
, and
Z.
Wang
, “
A review of marine renewable energy storage
,”
Int. J. Energy Res.
43
,
6108
6150
(
2018
).
9.
L.
Micheli
,
D. L.
Talavera
,
G.
Marco Tina
,
F.
Almonacid
, and
E. F.
Fernández
, “
Techno-economic potential and perspectives of floating photovoltaics in Europe
,”
Sol. Energy
243
,
203
214
(
2022
).
10.
E.
Güllü
,
B.
Doğru Mert
,
H.
Nazligul
,
T.
Demirdelen
, and
Y.
Gurdal
, “
Experimental and theoretical study: Design and implementation of a floating photovoltaic system for hydrogen production
,”
Int. J. Energy Res.
46
,
5083
5098
(
2022
).
11.
Z. A. A.
Majid
,
M. H.
Ruslan
,
K.
Sopian
,
M. Y.
Othman
, and
M. S. M.
Azmi
, “
Study on performance of 80 Watt floating photovoltaic panel
,”
J. Mech. Eng. Sci.
7
,
1150
1156
(
2014
).
12.
H.
Bahaidarah
,
A.
Subhan
,
P.
Gandhidasan
, and
S.
Rehman
, “
Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions
,”
Energy
59
,
445
453
(
2013
).
13.
L.
Liu
,
Q.
Wang
,
H.
Lin
,
H.
Li
,
Q.
Sun
, and
R.
Wennersten
, “
Power generation efficiency and prospects of floating photovoltaic systems
,”
Energy Procedia
105
,
1136
1142
(
2017
).
14.
B.
Sutanto
,
Y. S.
Indartono
,
A. T.
Wijayanta
, and
H.
Iacovides
, “
Enhancing the performance of floating photovoltaic system by using thermosiphon cooling method: Numerical and experimental analyses
,”
Int. J. Therm. Sci.
180
,
107727
(
2022
).
15.
H. S.
Jeong
,
J.
Choi
,
H. H.
Lee
, and
H. S.
Jo
, “
A study on the power generation prediction model considering environmental characteristics of floating photovoltaic system
,”
Appl. Sci.
10
,
4526
(
2020
).
16.
M.
Dörenkämper
,
A.
Wahed
,
A.
Kumar
,
M.
de Jong
,
J.
Kroon
, and
T.
Reindl
, “
The cooling effect of floating PV in two different climate zones: A comparison of field test data from the Netherlands and Singapore
,”
Sol. Energy
219
,
15
23
(
2021
).
17.
K. K.
Agrawal
,
S. K.
Jha
,
R. K.
Mittal
, and
S.
Vashishtha
, “
Assessment of floating solar PV (FSPV) potential and water conservation: Case study on Rajghat Dam in Uttar Pradesh, India
,”
Energy Sustainable Dev.
66
,
287
295
(
2022
).
18.
C.
Ferrer-Gisbert
,
J. J.
Ferrán-Gozálvez
,
M.
Redón-Santafé
,
P.
Ferrer-Gisbert
,
F. J.
Sánchez-Romero
, and
J. B.
Torregrosa-Soler
, “
A new photovoltaic floating cover system for water reservoirs
,”
Renewable Energy
60
,
63
70
(
2013
).
19.
M.
Rosa-Clot
,
G. M.
Tina
, and
S.
Nizetic
, “
Floating photovoltaic plants and wastewater basins: An Australian project
,”
Energy Procedia
134
,
664
674
(
2017
).
20.
M.
Kumar
and
A.
Kumar
, “
Experimental characterization of the performance of different photovoltaic technologies on water bodies
,”
Prog. Photovoltaics.
28
,
25
48
(
2019
).
21.
E.
Cuce
,
P. M.
Cuce
,
S.
Saboor
,
A.
Ghosh
, and
Y.
Sheikhnejad
, “
Floating PVs in terms of power generation, environmental aspects, market potential, and challenges
,”
Sustainability
14
,
2626
(
2022
).
22.
S.
Kim
,
M.
Oh
, and
H.
Park
, “
Analysis and prioritization of the floating photovoltaic system potential for reservoirs in Korea
,”
Appl. Sci.
9
,
395
(
2019
).
23.
M.
Perez
,
R.
Perez
,
C. R.
Ferguson
, and
J.
Schlemmer
, “
Deploying effectively dispatchable PV on reservoirs: Comparing floating PV to other renewable technologies
,”
Sol. Energy
174
,
837
847
(
2018
).
24.
N. M.
Silvério
,
R. M.
Barros
,
G. L.
Tiago Filho
,
M.
Redón-Santafé
,
I. F. S. D.
Santos
, and
V. E. D. M.
Valério
, “
Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin
,”
Energy Convers. Manage.
171
,
339
349
(
2018
).
25.
K.
Trapani
,
D. L.
Millar
, and
H. C. M.
Smith
, “
Novel offshore application of photovoltaics in comparison to conventional marine renewable energy technologies
,”
Renewable Energy
50
,
879
888
(
2013
).
26.
J.
Suh
,
Y.
Jang
, and
Y.
Choi
, “
Comparison of electric power output observed and estimated from floating photovoltaic systems: A case study on the Hapcheon Dam, Korea
,”
Sustainability
12
,
276
(
2020
).
27.
S.
Andini
,
N.
Suwartha
,
E.
Setiawan
, and
S.
Ma'Arif
, “
Analysis of biological, chemical, and physical parameters to evaluate the effect of floating solar PV in Mahoni Lake, Depok, Indonesia: Mesocosm experiment study
,”
J. Ecol. Eng.
23
,
201
207
(
2022
).
28.
H.
Ziar
,
B.
Prudon
,
F. Y. V.
Lin
,
B.
Roeffen
,
D.
Heijkoop
,
T.
Stark
,
S.
Teurlincx
,
L.
Senerpont Domis
,
E. G.
Goma
,
J. G.
Extebarria
,
I. N.
Alavez
,
D.
Tilborg
,
H.
Laar
,
R.
Santbergen
, and
O.
Isabella
, “
Innovative floating bifacial photovoltaic solutions for inland water areas
,”
Prog. Photovoltaics
29
,
725
743
(
2021
).
29.
V.
Bax
,
W. I.
van de Lageweg
,
B.
van den Berg
,
R.
Hoosemans
, and
T.
Terpstra
, “
Will it float? Exploring the social feasibility of floating solar energy infrastructure in the Netherlands
,”
Energy Res. Soc. Sci.
89
,
102569
(
2022
).
30.
K.
Trapani
and
M.
Redón Santafé
, “
A review of floating photovoltaic installations: 2007–2013
,”
Prog. Photovoltaics
23
,
524
532
(
2015
).
31.
A.
Sahu
,
N.
Yadav
, and
K.
Sudhakar
, “
Floating photovoltaic power plant: A review
,”
Renewable Sustainable Energy Rev.
66
,
815
824
(
2016
).
32.
S.
Oliveira-Pinto
and
J.
Stokkermans
, “
Marine floating solar plants: An overview of potential, challenges and feasibility
,”
Proc. Inst. Civil Eng.
173
,
120
135
(
2020
).
33.
T. T. E.
Vo
,
H.
Ko
,
J.
Huh
, and
N.
Park
, “
Overview of possibilities of solar floating photovoltaic systems in the offshore industry
,”
Energies
14
,
6988
(
2021
).
34.
J.
Wang
and
P. D.
Lund
, “
Review of recent offshore photovoltaics development
,”
Energies
15
,
7462
(
2022
).
35.
A.
El Hammoumi
,
S.
Chtita
,
S.
Motahhir
, and
A.
El Ghzizal
, “
Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels
,”
Energy Rep.
8
,
11992
12010
(
2022
).
36.
A.
Ghosh
, “
A comprehensive review of water based PV: Flotavoltaics, under water, offshore & canal top
,”
Ocean Eng.
281
,
115044
(
2023
).
37.
See https://www.agrisolarclearinghouse.org/case-study-far-niente-winery/ for “
Case Study: Far Niente Winery—AgriSolar Clearinghouse
,”
2023
.
38.
E. M. D.
Sacramento
,
P. C. M.
Carvalho
,
J. C.
Araújo
,
D. B.
Riffel
,
R. M. D. C.
Corrêa
, and
J. S.
Pinheiro Neto
, “
Scenarios for use of floating photovoltaic plants in Brazilian reservoirs
,”
IET Renewable Power Gener.
9
,
1019
1024
(
2015
).
39.
World Bank Publications
,
Where Sun Meets Water
(
World Bank Publications
,
2018
).
40.
L.
Essak
and
A.
Ghosh
, “
Floating photovoltaics: A review
,”
Clean Technol.
4
,
752
769
(
2022
).
41.
See https://www.intersolar.de/market-trends/floating-pv-europe for “
Floating PV: On the Rise in Europe
” (accessed August 2,
2023
).
42.
See https://ratedpower.com/blog/floating-solar/ for “
Floating solar: Emerging Technology Doubling Installed Power Per Year—RatedPower
,” (accessed August 2,
2023
).
43.
See https://www.pv-magazine-india.com/2023/05/29/annual-floating-solar-additions-to-top-6-gw-by-2031-says-woodmac/ for “
Annual Floating Solar Additions to Top 6 GW by 2031, Says WoodMac
” (accessed August 2,
2023
).
44.
See https://solarquarter.com/2021/05/24/10-gw-of-floating-solar-by-2022-current-status-and-steps-needed-to-achieve-the-target/ for “
10 GW of Floating Solar by 2022: Current Status And Steps Needed To Achieve The Target
,” (accessed April 10,
2023
).
45.
V. Ramasamy and R. Margolis, "Floating photovoltaic system cost benchmark: Q1 2021 installations on artificial water bodies
," Technical Report No. NREL/TP-7A40-80695 (NREL. 2021).
46.
S.
Kim
,
S.
Yoon
,
W.
Choi
, and
K.
Choi
, “
Application of floating photovoltaic energy generation systems in South Korea
,”
Sustainability
8
,
1333
(
2016
).
47.
See https://www.reuters.com/business/energy/singapore-unveils-one-worlds-biggest-floating-solar-panel-farms-2021-07-14/ for “
Singapore Unveils one of the World's Biggest Floating Solar Panel Farms
” (accessed April 9,
2023
).
48.
See https://www.pv-magazine.com/2021/11/25/south-koreas-largest-floating-pv-plant-now-online-2/ for “
South Korea's Largest Floating PV Plant Now Online
” (accessed April 11,
2023
).
49.
See https://www.offshore-energy.biz/china-commissions-320mw-floating-solar-power-plant/ for “
China commissions 320MW Floating Solar Power Plant
” (accessed April 9,
2023
).
50.
See https://taiyangnews.info/markets/45-mw-thailand-floating-solar-farm-synchronized-to-grid/ for “
45 MW Thailand Floating Solar Farm Synchronized To Grid | TaiyangNews
” (accessed April 9,
2023
).
51.
See https://global.kyocera.com/news-archive/2018/0301_wvfh.html for “
KYOCERA TCL Solar begins operation of Japan's largest 13.7MW Floating Solar Power Plant
” (accessed April 10,
2023
).
52.
See https://whitepinerenewables.com/white-pine-renewables-completes-largest-floating-solar-farm-in-the-u-s/ for “
White Pine Renewables Completes Largest Floating Solar Farm in the U.S.—White Pine
” (accessed April 10,
2023
).
53.
See https://pv-floating.com/references/ for “
References—Zimmerman PV-Floating
” (accessed April 10,
2023
).
54.
See https://www.pv-magazine.com/2022/05/16/storage-linked-5-mw-floating-pv-plant-goes-online-in-portugal/ for “
Storage-Linked 5 MW Floating PV Plant Goes Online In Portugal
,” 2023–4-10, 2023, (accessed April 10,
2023
).
55.
See https://www.pv-magazine.com/2022/11/02/spic-ocean-sun-build-worlds-first-offshore-floating-solar-wind-park/ for “
SPIC, Ocean Sun Switch on Offshore Floating Solar-Wind Pilot
.” (accessed April 9,
2023
).
56.
Y.
Bian
and
L.
Yunfang
, “
Review on the development of photovoltaic power generation system of new energy
,”
IOP Conf. Ser.
186
,
12078
(
2018
).
57.
N.
Soudi
,
S.
Nanayakkara
,
N. M. S.
Jahed
, and
S.
Naahidi
, “
Rise of nature-inspired solar photovoltaic energy convertors
,”
Sol. Energy
208
,
31
45
(
2020
).
58.
J.
Dai
,
C.
Zhang
,
H. V.
Lim
,
K. K.
Ang
,
X.
Qian
,
J. L. H.
Wong
,
S. T.
Tan
, and
C. L.
Wang
, “
Design and construction of floating modular photovoltaic system for water reservoirs
,”
Energy
191
,
116549
(
2020
).
59.
K.
Trapani
and
D. L.
Millar
, “
The thin film flexible floating PV (T3F-PV) array: The concept and development of the prototype
,”
Renewable Energy
71
,
43
50
(
2014
).
60.
R.
Kanotra
and
R.
Shankar
, “
Floating solar photovoltaic mooring system design and analysis
,” in OCEANS 2022 – Chennai (IEEE,
2022
).
61.
H.
Liu
,
V.
Krishna
,
J.
Lun Leung
,
T.
Reindl
, and
L.
Zhao
, “
Field experience and performance analysis of floating PV technologies in the tropics
,”
Prog. Photovoltaics.
26
,
957
967
(
2018
).
62.
D. K.
Dileep
and
K. R.
Bharath
, “
A brief study of solar home inverters
,” in 2018 International Conference on Control, Power, Communication and Computing Technologies(ICCPCCT) (
IEEE, 2018)
, pp.
334
339
.
63.
G.
Lee
,
J.
Choi
,
J.
Seo
, and
H.
Ha
, “
Comparative study of effect of wind and wave load on floating PV: Computational simulation and design method
,”
Korean Soc. Manuf. Process Eng.
18
,
9
17
(
2019
).
64.
M. K.
Kaymak
and
A. D.
Şahin
, “
Problems encountered with floating photovoltaic systems under real conditions: A new FPV concept and novel solutions
,”
Sustain Energy Technol.
47
,
101504
(
2021
).
65.
H.
Nisar
,
A.
Kashif Janjua
,
H.
Hafeez
,
S.
Shakir
,
N.
Shahzad
, and
A.
Waqas
, “
Thermal and electrical performance of solar floating PV system compared to on-ground PV system-an experimental investigation
,”
Sol Energy.
241
,
231
247
(
2022
).
66.
B.
Shiva Kumar
and
K.
Sudhakar
, “
Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India
,”
Energy Rep.
1
,
184
192
(
2015
).
67.
Y.
Choi
and
J.
Lee
, “
Structural Safety Assessment of Ocean-Floating Photovoltaic Structure Model
,”
Isr J Chem.
55
,
1081
1090
(
2015
).
68.
S. M.
Choi
,
C.
Park
,
S.
Cho
, and
B.
Lim
, “
Effects of various inlet angle of wind and wave loads on floating photovoltaic system considering stress distributions
,”
J Clean Prod.
387
,
135876
(
2023
).
69.
G.
Lee
,
J.
Choi
,
J.
Kim
,
J.
Seo
, and
H.
Ha
, “
Numerical simulations of wind loading on the floating photovoltaic systems
,”
J Visual-Jpn.
24
,
471
484
(
2021
).
70.
A.
Ghigo
,
E.
Faraggiana
,
M.
Sirigu
,
G.
Mattiazzo
, and
G.
Bracco
, “
Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa
,”
Energies.
15
,
8804
(
2022
).
71.
B. G.
Bhang
,
S. C.
Woo
,
W.
Lee
,
J. H.
Choi
,
S.
Shin
,
C.
Lee
,
M.
Park
,
C.
Won
, and
H.
Ahn
, “
Transmission loss from voltage drop in a DC cable for a floating photovoltaic system in a reservoir
,”
New Renewable Energy
16
,
48
57
(
2020
).
72.
M. S. A.
Bakar
and
J.
Nandong
, “
Technoeconomic analysis of floating solar field for 1 GWh of electricity generation
,”
IOP Conf. Ser.
495
,
12064
(
2019
).
73.
A Comprehensive Overview Of Floating Solar Projects
, “
A Comprehensive Overview Of Floating Solar Projects
,” 2023–8-3,
2023
, https://www.solarsquare.in/blog/floating-solar-projects/.
74.
C. L.
Crago
and
E.
Koegler
, “
Drivers of growth in commercial-scale solar PV capacity
,”
Energy Policy
120
,
481
491
(
2018
).
75.
A.
Ramshanker
,
S.
Chakraborty
,
D.
Elangovan
,
H.
Kotb
,
K. M.
Aboras
,
N. C.
Giri
, and
E. B.
Agyekum
, “
CO2 emission analysis for different types of electric vehicles when charged from floating solar photovoltaic systems
,”
Appl. Sci.
12
,
12552
(
2022
).
76.
N.
Yadav
,
M.
Gupta
, and
K.
Sudhakar
, “
Energy assessment of floating photovoltaic system
,” in
International Conference on Electrical Power and Energy Systems (ICEPES)
(
IEEE
,
2016
), pp.
264
269
.
77.
C.
Pérez-Collazo
,
D.
Greaves
, and
G.
Iglesias
, “
A review of combined wave and offshore wind energy
,”
Renewable Sustainable Energy Rev.
42
,
141
153
(
2015
).
78.
A.
Myhr
,
C.
Bjerkseter
,
A.
Ågotnes
, and
T. A.
Nygaard
, “
Levelised cost of energy for offshore floating wind turbines in a life cycle perspective
,”
Renewable Energy
66
,
714
728
(
2014
).
79.
S. P.
Makhija
,
S. P.
Dubey
,
R. C.
Bansal
, and
P. K.
Jena
, “
Techno-environ-economical analysis of floating PV/on-ground PV/grid extension systems for electrification of a remote area in India
,”
Technol. Econ. Smart Grids Sustainable Energy
6
,
6
(
2021
).
80.
N.
Ravichandran
,
N.
Ravichandran
, and
B.
Panneerselvam
, “
Comparative assessment of offshore floating photovoltaic systems using thin film modules for Maldives islands
,”
Sustainable Energy Technol.
53
,
102490
(
2022
).
81.
P. E.
Campana
,
L.
Wästhage
,
W.
Nookuea
,
Y.
Tan
, and
J.
Yan
, “
Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems
,”
Sol. Energy
177
,
782
795
(
2019
).
You do not currently have access to this content.