Climate change and land use conflicts represent two of the greatest challenges worldwide. One possible solution are agrivoltaic (APV) systems, in which agricultural production is combined with a photovoltaic (PV) system in the same area. However, there is insufficient information on the environmental impacts of this technology. Therefore, the goal of this study was to evaluate the environmental impacts of an agrivoltaic system with conventional potato production using life cycle assessment (LCA). For this purpose, three scenarios were developed and compared in terms of their environmental impact: An APV system with combined potato and electricity production (scenario 1), a system with spatially separated potato and photovoltaic (PV) electricity production (scenario 2), and a potato scenario in which the electricity purchase was covered by the German electricity mix (scenario 3). The APV system (scenario 1) and the system with ground-mounted PV modules (scenario 2) performed better than scenario 3. In the Land Use category, scenario 1 caused the lowest environmental impact. Comparing the PV scenarios, scenario 2 had lower impacts in 12 of the 17 impact categories due to lower steel consumption. Also, comparing scenario 1 with scenario 3, lower impacts of the APV system were observed in 13 categories. The impacts of APV systems are generally similar to those of ground mounted PV systems, and impacts of both PV systems are lower than the existing, conventional systems of separate energy and crop production. However, due to ongoing advances in system design, materials used for the mounting structures and in the development of solar modules, it can be expected that the impact of APV will be significantly reduced in the future.

1.
Abiona
,
B. G.
,
Fakoya
,
E. O.
, and
Esun
,
J.
, “
The impacts of climate change on the livelihood of arable crop farmers in Southwest, Nigeria
,” in
Innovation in Climate Change
, edited by
W.
Leal Filho
(
Adaptation Springer International Publishing
,
Cham
,
2016
), pp
289
296
.
2.
Adeh
,
E. H.
,
Selker
,
J. S.
, and
Higgins
,
C. W.
, “
Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency
,”
PLoS One
13
(
11
),
e0203256
(
2018
).
3.
Agostini
,
A.
,
Colauzzi
,
M.
, and
Amaducci
,
S.
, “
Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment
,”
Appl. Energy
281
,
116102
(
2021
).
4.
Agovino
,
M.
,
Casaccia
,
M.
,
Ciommi
,
M.
,
Ferrara
,
M.
, and
Marchesano
,
K.
, “
Agriculture, climate change and sustainability: The case of EU-28
,”
Ecol. Indic.
105
,
525
543
(
2019
).
5.
Arneth
,
A.
,
Denton
,
F.
,
Agus
,
F.
,
Elbehri
,
A.
,
Erb
,
K.
,
Elasha
,
B. O.
,
Rahimi
,
M.
et al, “
Framing and context
,” in
Intergovernmental Panel on Climate Change (IPCC) (Ed) An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems
,
2019
.
6.
Barron-Gafford
,
G. A.
,
Pavao-Zuckerman
,
M. A.
,
Minor
,
R. L.
,
Sutter
,
L. F.
,
Barnett-Moreno
,
I.
et al, “
Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands
,”
Nat. Sustainability
2
(
9
),
848
855
(
2019
).
7.
Bednova
,
O. V.
,
Kuznetsov
,
V. A.
, and
Tarasova
,
N. P.
, “
Eutrophication of an urban forest ecosystem: Causes and effects
,”
Dokl. Earth Sci.
478
(
1
),
124
128
(
2018
).
8.
Blonk
, see https://blonksustainability.nl/tools/agri-footprint for “
Agri-footprint. The world's Leading Source of Environmental footprint information in agri-food
(
2022
)” (accessed July 22, 2022).
9.
Böhm
,
J.
,
de Witte
,
T.
, and
Michaud
,
C.
, “
Land use Prior to Installation of Ground-mounted Photovoltaic in Germany—GIS-analysis Based on MaStR and Basis-DLM
,”
Z. Energiewirtsch.
46
(
2
),
147
156
(
2022
).
11.
Bundesministerium für Ernährung und Landwirtschaft
,
Erntebericht 2020
(
Mengen und Preise
,
Berlin
,
2020
).
12.
Bundesregierung
, see https://www.bundesregierung.de/breg-de/themen/klimaschutz/climate-change-act-2021-1936846 for “
Climate Change Act 2021. Intergenerational Contract for the Climate
” (
2021
) (accessed December 4, 2021).
13.
Calzadilla
,
A.
,
Rehdanz
,
K.
,
Betts
,
R.
,
Falloon
,
P.
,
Wiltshire
,
A.
, and
Tol
,
R. S. J.
, “
Climate change impacts on global agriculture
,”
Clim. Change
120
(
1–2
),
357
374
(
2013
).
14.
Challinor
,
A. J.
,
Watson
,
J.
,
Lobell
,
D. B.
,
Howden
,
S. M.
,
Smith
,
D. R.
, and
Chhetri
,
N.
, “
A meta-analysis of crop yield under climate change and adaptation
,”
Nat. Clim. Change
4
(
4
),
287
291
(
2014
).
15.
Dhanda
,
K. K.
and
Hartman
,
L. P.
, “
The ethics of carbon neutrality: A critical examination of voluntary carbon offset providers
,”
J. Bus. Ethics
100
(
1
),
119
149
(
2011
).
16.
Eckstein
,
D.
,
Künzel
,
V.
,
Schäfer
,
L.
, and
Winges
,
M.
, “
Global Climate Risk Index 2020
,”
Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2018 and 1999–2018
(
GermanWatch
,
Bonn
2019
).
17.
ecoinvent
, see https://ecoinvent.org/ for “information on the functionality and potential applications of the database, 2011” (accessed July 22,
2022
).
18.
Elamri
,
Y.
,
Cheviron
,
B.
,
Lopez
,
J.-M.
,
Dejean
,
C.
, and
Belaud
,
G.
, “
Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces
,”
Agric. Water Manage.
208
,
440
453
(
2018
).
19.
European Comission
, “
Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations
,”
Official J. Eur. Union
L 124/1 (
2013
).
20.
Fazio
,
S.
,
Biganzioli
,
F.
,
Laurentiis
,
V. de
,
Zampori
,
L.
,
Sala
,
S.
, and
Diaconu
,
E.
, “
Supporting information to the characterization factors of recommended EF Life Cycle Impact Assessment methods
,” Report No. 2 (
European Comission
,
Ispra, Italien
,
2018
).
21.
Fernández-Ríos
,
A.
,
Laso
,
J.
,
Amo-Setién
,
F. J.
,
Abajas-Bustillo
,
R.
,
Ortego-Mate
,
C.
et al, “
Water–energy–food nexus and life cycle thinking: A new approach to environmental and nutritional assessment of potato chips
,”
Foods
11
(
7
),
1018
(
2022
).
22.
Fraunhofer-Institut für Solare Energiesysteme ISE
, see https://www.ise.fraunhofer.de/en/press-media/news/2022/public-net-electricity-in-germany-in-2021-renewables-weaker-due-to-weather.html for “
Public Net Electricity Generation in Germany in 2021: Renewables Weaker Due to Weather (2022)
” (accessed December 15,
2022
).
23.
Fraunhofer-Institut für Solare Energiesysteme ISE
, see https://www.ise.fraunhofer.de/en/press-media/press-releases/2022/solar-cells-from-recycled-silicon.html for “
PERC Solar Cells from 100 Percent Recycled Silicon
” (
2022
).
24.
Frischknecht
,
R.
,
Heath
,
G.
,
Raugei
,
M.
,
Sinha
,
P.
,
Wild-Scholten
,
M. d.
,
Fthenakis
,
V.
et al, “
Methodology guidelines on life cycle assessment of photovoltaic electricity
,”
Report No. IEA-PVPS T12-06:2016
(
IEA
,
2016
).
25.
Frischknecht
,
R.
,
Itten
,
R.
,
Sinha
,
P.
,
Wild-Scholten
,
M. D.
,
Zhang
,
J.
,
Fthenakis
,
V.
et al, “
Life cycle inventories and life cycle assessments of photovoltaic systems
,”
Report No. IEA-PVPS 12-04:2015
[
International Energy Agency (IEA)
,
2015
].
26.
Gazbour
,
N.
,
Razongles
,
G.
,
Monnier
,
E.
,
Joanny
,
M.
,
Charbuillet
,
C.
,
Burgun
,
F.
, and
Schaeffer
,
C.
, “
A path to reduce variability of the environmental footprint results of photovoltaic systems
,”
J. Cleaner Prod.
197
,
1607
1618
(
2018
).
27.
Global Carbon Project
, see https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2021 for “
Data supplement to the Global Carbon Budget 2021
” (
2021
) (accessed December 15, 2022).
28.
Handler
,
R.
and
Pearce
,
J. M.
, “
Greener sheep: Life cycle analysis of integrated sheep agrivoltaic systems
,”
Cleaner Energy Syst.
3
,
100036
(
2022
).
29.
Hengstler
,
J.
,
Russ
,
M.
,
Stoffregen
,
A.
,
Hendrich
,
A.
,
Weidner
,
S.
,
Held
,
M.
, and
Briem
,
A.-K.
, “
Aktualisierung und bewertung der ökobilanzen von windenergie-und photovoltaikanlagen unter berücksichtigung aktueller technologieentwicklungen
,”
Abschlussbericht
, edited by (
Umweltbundesamt
,
Dessau-Roßlau
,
2021
).
30.
Hoesly
,
R. M.
,
Smith
,
S. J.
,
Feng
,
L.
,
Klimont
,
Z.
,
Janssens-Maenhout
,
G.
,
Pitkanen
,
T.
et al, “
Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)
,”
Geosci. Model Dev.
11
(
1
),
369
408
(
2018
).
31.
Huang
,
J.
,
Xu
,
C.
,
Ridoutt
,
B. G.
,
Wang
,
X.
, and
Ren
,
P.
, “
Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China
,”
J. Cleaner Prod.
159
,
171
179
(
2017
).
32.
Ifeanyi-obi
,
C. C.
,
Togun
,
A. O.
, and
Lamboll
,
R.
, “
Influence of climate change on cocoyam production in aba agricultural zone of Abia state, Nigeria
,” in
Innovation in Climate Change Adaptation
, edited by
W. L.
Filho
(
Springer
,
Cham
,
2016
), pp.
261
273
.
33.
Intergovernmental Panel on Climate Change
, “
Summary for Policymakers
,” in
Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(
IPCC
,
Geneva, Switzerland
,
2023
).
34.
Jaworski
,
N. A.
,
Howarth
,
R. W.
, and
Hetling
,
L. J.
, “
Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the Northeast United States
,”
Environ. Sci. Technol.
31
(
7
),
1995
2004
(
1997
).
35.
Jia
,
J.
,
Cheng
,
S.
,
Yao
,
S.
,
Xu
,
T.
,
Zhang
,
T.
,
Ma
,
Y.
et al, “
Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry
,”
Atmos. Environ.
182
,
115
127
(
2018
).
36.
Khan
,
M. N.
and
Mohammad
,
F.
, “
Eutrophication: Challenges and solutions
,” in
Eutrophication: Causes, Consequences and Control
(
Springer Netherlands
,
2014
), pp.
1
15
.
37.
Kostik
,
N.
,
Bobyl
,
A.
,
Rud
,
V.
, and
Salamov
,
I.
, “
The potential of agrivoltaic systems in the conditions of southern regions of Russian Federation
,”
IOP Conf. Ser.
578
(
1
),
12047
(
2020
).
38.
Kowalczyk
,
Z.
, “
Environmental impact of potato cultivation on plantations covering areas of various sizes
,”
E3S Web Conf.
132
,
2002
(
2019
).
39.
Küstermann
,
B.
,
Kainz
,
M.
, and
Hülsbergen
,
K. J.
, “
Modeling carbon cycles and estimation of greenhouse gas emissions from organic and conventional farming systems
,”
Renewable Agric. Food Syst.
23
(
1
),
38
52
(
2008
).
40.
Leon
,
A.
and
Ishihara
,
K. N.
, “
Influence of allocation methods on the LC-CO2 emission of an agrivoltaic system
,”
Resour., Conservation Recycl.
138
,
110
117
(
2018
).
41.
Liu
,
L.
,
Zheng
,
X.
,
Wei
,
X.
,
Kai
,
Z.
, and
Xu
,
Y.
, “
Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication
,”
Sci. Rep.
11
(
1
),
23015
(
2021
).
42.
Loladze
,
I.
, “
Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition
,”
eLife
3
,
e02245
(
2014
).
43.
Lovering
,
J.
,
Swain
,
M.
,
Blomqvist
,
L.
, and
Hernandez
,
R. R.
, “
Land-use intensity of electricity production and tomorrow's energy landscape
,”
PLoS One
17
(
7
),
e0270155
(
2022
).
44.
Ma
,
X.
,
Yang
,
D.
,
Shen
,
X.
,
Zhai
,
Y.
,
Zhang
,
R.
, and
Hong
,
J.
, “
How much water is required for coal power generation: An analysis of gray and blue water footprints
,”
Sci. Total Environ.
636
,
547
557
(
2018
).
45.
Mbow
,
C.
,
Rosenzweig
,
C.
,
Barioni
,
L. G.
,
Benton
,
T. G.
,
Herrero
,
M.
,
Krishnapillai
,
M.
et al, “
Food security
,” in
Intergovernmental Panel on Climate Change: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC)
(IPCC,
2019
), pp.
437
550
.
46.
Mendelsohn
,
R.
, “
The impact of climate change on agriculture in Asia
,”
J. Integr. Agric.
13
(
4
),
660
665
(
2014
).
47.
Minx
,
J. C.
,
Lamb
,
W. F.
,
Andrew
,
R. M.
,
Canadell
,
J. G.
,
Crippa
,
M.
,
Döbbeling
,
N.
et al, “
A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019
,”
Earth Syst. Sci. Data
13
(
11
),
5213
5252
(
2021
).
48.
Myers
,
S. S.
,
Zanobetti
,
A.
,
Kloog
,
I.
,
Huybers
,
P.
,
Leakey
,
A. D. B.
,
Bloom
,
A. J.
et al, “
Increasing CO2 threatens human nutrition
,”
Nature
510
(
7503
),
139
142
(
2014
).
49.
Olmez
,
G. M.
,
Dilek
,
F. B.
,
Karanfil
,
T.
, and
Yetis
,
U.
, “
The environmental impacts of iron and steel industry: A life cycle assessment study
,”
J. Cleaner Prod.
130
,
195
201
(
2016
).
50.
Onaga
,
G.
and
Wydra
,
K.
, “
Advances in plant tolerance to abiotic stresses
,” in
Plant Genomics InTech
, edited by
I. Y.
Abdurakhmonov
(
InTech
,
2016a
), pp.
167
227
.
51.
Onaga
,
G.
and
Wydra
,
K.
, “
Advances in plant tolerance to biotic stresses
,” in
Plant Genomics InTech
, edited by
I. Y.
Abdurakhmonov
(
InTech
,
2016b
), pp.
229
272
.
52.
Onaga
,
G.
and
Wydra
,
K.
,“
Recent understanding on molecular mechanisms of plant abiotic stress response and tolerance
,” in
Molecular Breeding in Wheat, Maize and Sorghum: Strategies for Improving Abiotic Stress Tolerance and Yield
, edited by
M. A.
Hossain
,
M.
Alam
,
S.
Seneweera
,
S.
Rakshit
, and
R.
Henry
(
CABI
,
Wallingford
,
2021
), pp
1
23
.
53.
Pascaris
,
A. S.
,
Handler
,
R.
,
Schelly
,
C.
, and
Pearce
,
J. M.
, “
Life cycle assessment of pasture-based agrivoltaic systems: Emissions and energy use of integrated rabbit production
,”
Cleaner Responsible Consumption
3
,
100030
(
2021
).
54.
Pattey
,
E.
and
Qiu
,
G.
, “
Trends in primary particulate matter emissions from Canadian agriculture
,”
J. Air Waste Manage. Assoc.
62
(
7
),
737
747
(
2012
).
55.
Poulek
,
V.
,
Strebkov
,
D. S.
,
Persic
,
I. S.
, and
Libra
,
M.
, “
Towards 50years lifetime of PV panels laminated with silicone gel technology
,”
Sol. Energy
86
(
10
),
3103
3108
(
2012
).
56.
PRé Sustainability B.V
, see https://simapro.com/ for “
SimaPro. LCA Software for Informed Change-Makers
” (accessed July 22,
2022
).
57.
Putnam
,
A. E.
and
Broecker
,
W. S.
, “
Human-induced changes in the distribution of rainfall
,”
Sci. Adv.
3
(
5
),
e1600871
(
2017
).
58.
Rabaia
,
M. K. M.
,
Semeraro
,
C.
, and
Olabi
,
A.-G.
, “
Recent progress towards photovoltaics' circular economy
,”
J. Cleaner Prod.
373
,
133864
(
2022
).
59.
Rice
,
K. C.
and
Herman
,
J. S.
, “
Acidification of Earth: An assessment across mechanisms and scales
,”
Appl. Geochem.
27
(
1
),
1
14
(
2012
).
60.
Riediger
,
J.
,
Breckling
,
B.
,
Nuske
,
R. S.
, and
Schröder
,
W.
, “
Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany
,”
Environ. Sci. Eur.
26
(
1
),
18
(
2014
).
61.
Riediger
,
J.
,
Breckling
,
B.
,
Svoboda
,
N.
, and
Schröder
,
W.
, “
Modelling regional variability of irrigation requirements due to climate change in Northern Germany
,”
Sci. Total Environ.
541
,
329
340
(
2016
).
62.
Rodale Institute
, see https://rodaleinstitute.org/wp-content/uploads/fst-30-year-report.pdf for “
The Farming Systems Trial. Celebrating 30 years
” (
2011
).
63.
Rousi
,
E.
,
Kornhuber
,
K.
,
Beobide-Arsuaga
,
G.
,
Luo
,
F.
, and
Coumou
,
D.
, “
Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia
,”
Nat. Commun.
13
,
3851
(
2022
).
64.
Röös
,
E.
,
Bajželj
,
B.
,
Smith
,
P.
,
Patel
,
M.
,
Little
,
D.
, and
Garnett
,
T.
, “
Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures
,”
Global Environ. Change
47
,
1
12
(
2017
).
65.
Schindele
,
S.
,
Trommsdorff
,
M.
,
Schlaak
,
A.
,
Obergfell
,
T.
,
Bopp
,
G.
,
Reise
,
C.
et al, “
Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications
,”
Appl. Energy
265
,
114737
(
2020
).
66.
Schlenker
,
W.
and
Lobell
,
D. B.
, “
Robust negative impacts of climate change on African agriculture
,”
Environ. Res. Lett.
5
(
1
),
14010
(
2010
).
67.
Scolaro
,
E.
,
Beligoj
,
M.
,
Estevez
,
M. P.
,
Alberti
,
L.
,
Renzi
,
M.
, and
Mattetti
,
M.
, “
Electrification of agricultural machinery: A review
,”
IEEE Access
9
,
164520
164541
(
2021
).
68.
Scuderi
,
A.
,
Cammarata
,
M.
,
La Via
,
G.
,
Pecorino
,
B.
, and
Timpanaro
,
G.
, “
Life-cycle assessment of biofortified productions: The case of selenium potato
,”
Appl. Syst. Innovation
4
(
1
),
1
(
2021
).
69.
SimaPro
, see https://simapro.com/about/ for “
About SimaPro
(
2021
)” (accessed November 14, 2021).
70.
Stolz
,
P.
,
Frischknecht
,
R.
,
Wyss
,
F.
, and
Wild-Scholten
,
M. D.
, see http://pvthin.org/wp-content/uploads/2020/05/174_PEFCR_PV_LCA-screening-report_v2.0.pdf for “
PEF Screening Report of Electricity From Photovoltaic Panels in the Context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilots
” (
2016
).
71.
Teem Earth
, see https://www.co2.earth/daily-co2 for “
Daily CO2
” (
2022
).
72.
Thüringer Landesamt für Statistik
, see https://statistik.thueringen.de/presse/2019/pr_332_19.pdf for “
Erneut unterdurchschnittliche Kartoffelernte in Thüringen
” (
2019
).
73.
Thüringer Landesamt für Statistik
, see https://statistik.thueringen.de/presse/2020/pr_291_20.pdf for “
Thüringer Kartoffelernte fällt unterdurchschnittlich aus
” (
2020
).
74.
Timpanaro
,
G.
,
Branca
,
F.
,
Cammarata
,
M.
,
Falcone
,
G.
, and
Scuderi
,
A.
, “
Life cycle assessment to highlight the environmental burdens of early potato production
,”
Agronomy
11
(
5
),
879
(
2021
).
75.
Trommsdorff
,
M.
,
Gruber
,
S.
,
Keinath
,
T.
,
Hopf
,
M.
,
Hermann
,
C.
,
Schönberger
F.
et al,
Agrivoltaics: Opportunities for Agriculture and The Energy Transition. A Guideline for Germany
[
Fraunhofer-Institut für Solare Energiesysteme ISE (Fraunhofer ISE)
,
Freiburg
,
2022
].
76.
Trommsdorff
,
M.
,
Kang
,
J.
,
Reise
,
C.
,
Schindele
,
S.
,
Bopp
,
G.
,
Ehmann
,
A.
et al, “
Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany
,”
Renewable Sustainable Energy Rev.
140
,
110694
(
2021
).
77.
Tubiello
,
F. N.
,
Rosenzweig
,
C.
,
Conchedda
,
G.
,
Karl
,
K.
,
Gütschow
,
J.
,
Xueyao
,
P.
et al, “
Greenhouse gas emissions from food systems: Building the evidence base
,”
Environ. Res. Lett.
16
(
6
),
65007
(
2021
).
78.
Tubiello
,
F. N.
,
Salvatore
,
M.
,
Cóndor Golec
,
R. D.
,
Ferrara
,
A.
,
Rossi
,
S.
,
Biancalani
,
R.
et al, “
Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks: 1990—2011 Analysis
,”in
ESS Working Paper 2
,
2014
.
79.
United Nations
, see https://unece.org/sites/default/files/2022-04/LCA_3_FINAL%20March%202022.pdf for “Carbon Neutrality in the UNECE Region: Integrated Life-cycle Assessment of Electricity Sources (
United Nations
,
Geneva
,
2021
).”
80.
Wagner
,
S.
,
Angenendt
,
E.
,
Beletskaya
,
O.
, and
Zeddies
,
J.
, “
Costs and benefits of ammonia and particulate matter abatement in German agriculture including interactions with greenhouse gas emissions
,”
Agric. Syst.
141
,
58
68
(
2015
).
81.
Wagner
,
M.
,
Lask
,
J.
,
Kiesel
,
A.
,
Lewandowski
,
I.
,
Weselek
,
A.
et al, “
Agrivoltaics: The environmental impacts of combining food crop cultivation and solar energy generation
,”
Agronomy
13
(
2
),
299
(
2023
).
82.
Walston
,
L. J.
,
Barley
,
T.
,
Bhandari
,
I.
,
Campbell
,
B.
,
McCall
,
J.
et al, “
Opportunities for agrivoltaic systems to achieve synergistic food-energy-environmental needs and address sustainability goals
,”
Front. Sustainable Food Syst.
6
,
932018
(
2022
).
83.
Webber
,
H.
,
Lischeid
,
G.
,
Sommer
,
M.
,
Finger
,
R.
,
Nendel
,
C.
,
Gaiser
,
T.
, and
Ewert
,
F.
, “
No perfect storm for crop yield failure in Germany
,”
Environ. Res. Lett.
15
(
10
),
104012
(
2020
).
84.
Weselek
,
A.
,
Bauerle
,
A.
,
Hartung
,
J.
,
Zikeli
,
S.
,
Lewandowski
,
I.
, and
Högy
,
P.
, “
Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate
,”
Agron. Sustainable Dev.
41
(
5
),
59
(
2021
).
85.
Zhai
,
L.
,
Liu
,
H.
,
Zhang
,
J.
,
Huang
,
J.
, and
Wang
,
B.
, “
Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China
,”
Agric. Sci. China
10
(
11
),
1748
1757
(
2011
).
86.
Zhang
,
X.
,
Wan
,
H.
,
Zwiers
,
F. W.
,
Hegerl
,
G. C.
, and
Min
,
S.-K.
, “
Attributing intensification of precipitation extremes to human influence
,”
Geophys. Res. Lett.
40
(
19
),
5252
5257
, https://doi.org/10.1002/grl.51010 (
2013
).

Supplementary Material

You do not currently have access to this content.