Recently, the large-scale integration of power electronic-based renewable energy power plants has changed the operation and response mechanism of the power system, resulting in several emerging oscillation issues that have seriously been threatening the system's stability. It helps us to recognize the similarities and differences among the triggering causes and formation mechanisms of oscillation scenarios. Following several typical oscillation events in the real world and the timescale decomposition method, this paper comprehensively reviews the wide-bandwidth oscillation study from the aspects of the analysis methods, possible cause, mechanism, and mitigation solution. The paper provides a perspective to classify the oscillations in the modern power systems on the basis of the oscillation frequency and the main oscillation module. This classification framework involves not only emerging oscillations in the power system with large-scale renewable energy sources integration but also includes typical oscillations in traditional power systems. It also systematically presents the relative relationship, development process, and inner influence between emerging oscillations and typical oscillations. Based on this review, the future research is suggested to focus on the relationship between different analytical methods or oscillation mechanisms, as well as the stability risk assessment of hybrid alternating current and direct current power systems.

1.
B.
Kroposki
,
B.
Johnson
,
Y.
Zhang
,
V.
Gevorgian
,
P.
Denholm
,
B.-M.
Hodge
, and
B.
Hannegan
, “
Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy
,”
IEEE Power Energy Mag.
15
,
61
73
(
2017
).
2.
GWEC
,
GWEC Global Wind Report 2022
(
GWEC
,
2022
).
3.
C.
Collados-Rodriguez
,
M.
Cheah-Mane
,
E.
Prieto-Araujo
, and
O.
Gomis-Bellmunt
, “
Stability analysis of systems with high VSC penetration: Where is the limit?
,”
IEEE Trans. Power Delivery
35
,
2021
2031
(
2020
).
4.
F.
Blaabjerg
,
Y.
Yang
,
D.
Yang
, and
X.
Wang
, “
Distributed power-generation systems and protection
,”
Proc. IEEE
105
,
1311
1331
(
2017
).
5.
P.
Rodriguez
and
K.
Rouzbehi
, “
Multi-terminal DC grids: Challenges and prospects
,”
J. Mod. Power Syst. Clean Energy
5
,
515
523
(
2017
).
6.
N.
Hatziargyriou
,
J.
Milanovic
,
C.
Rahmann
,
V.
Ajjarapu
,
C.
Canizares
,
I.
Erlich
,
D.
Hill
,
I.
Hiskens
,
I.
Kamwa
,
B.
Pal
,
P.
Pourbeik
,
J.
Sanchez-Gasca
,
A.
Stankovic
,
T.
Van Cutsem
,
V.
Vittal
, and
C.
Vournas
, “
Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies
,” No. PES-TR77 (
IEEE Power & Energy Society
,
2020
).
7.
P.
Kundur
,
Power System Stability and Control
,
1st ed
. (
McGraw-Hill Education
,
New York
,
1994
).
8.
C.
Buchhagen
,
C.
Rauscher
,
A.
Menze
, and
J.
Jung
, “
BorWin1—First experiences with harmonic interactions in converter dominated grids
,” in
International ETG Congress 2015; Die Energiewende—Blueprints for the New Energy Age
,
2015
.
9.
Y.
Cheng
,
L.
Fan
,
J.
Rose
,
F.
Huang
,
J.
Schmall
,
X.
Wang
,
X.
Xie
,
J.
Shair
,
J.
Ramamurthy
,
N.
Modi
,
C.
Li
,
C.
Wang
,
S.
Shah
,
B. C.
Pal
,
Z.
Miao
,
A.
Isaacs
,
J.
Mahseredjian
, and
Z. J.
Zhou
, “
Real-world subsynchronous oscillation events in power grids with high penetrations of inverter-based resources
,”
IEEE Trans. Power Syst.
38
,
316
(
2022
).
10.
L.
Fan
,
Z.
Miao
,
S.
Shah
,
Y.
Cheng
,
J.
Rose
,
S.-H.
Huang
,
B.
Pal
,
X.
Xie
,
N.
Modi
,
S.
Wang
, and
S.
Zhu
, “
Real-world 20-Hz IBR subsynchronous oscillations: Signatures and mechanism analysis
,”
IEEE Trans. Energy Convers.
37
,
2863
(
2022
).
11.
C.
Zou
,
H.
Rao
,
S.
Xu
,
Y.
Li
,
W.
Li
,
J.
Chen
,
X.
Zhao
,
Y.
Yang
, and
B.
Lei
, “
Analysis of resonance between a VSC-HVDC converter and the AC grid
,”
IEEE Trans. Power Electron.
33
,
10157
10168
(
2018
).
12.
N.
Hatziargyriou
,
J.
Milanovic
,
C.
Rahmann
,
V.
Ajjarapu
,
C.
Canizares
,
I.
Erlich
,
D.
Hill
,
I.
Hiskens
,
I.
Kamwa
,
B.
Pal
,
P.
Pourbeik
,
J.
Sanchez-Gasca
,
A.
Stankovic
,
T.
Van Cutsem
,
V.
Vittal
, and
C.
Vournas
, “
Definition and classification of power system stability
,”
IEEE Trans. Power Syst.
36
,
3271
3281
(
2021
).
13.
J.
Shair
,
H.
Li
,
J.
Hu
, and
X.
Xie
, “
Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics
,”
Renewable Sustainable Energy Rev.
145
,
111111
(
2021
).
14.
L.
Harnefors
,
M.
Bongiorno
, and
S.
Lundberg
, “
Input-admittance calculation and shaping for controlled voltage-source converters
,”
IEEE Trans. Ind. Electron.
54
,
3323
3334
(
2007
).
15.
L.
Harnefors
,
R.
Finger
,
X.
Wang
,
H.
Bai
, and
F.
Blaabjerg
, “
VSC input-admittance modeling and analysis above the Nyquist frequency for passivity-based stability assessment
,”
IEEE Trans. Ind. Electron.
64
,
6362
6370
(
2017
).
16.
E. G.
Cate
,
K.
Hemmaplardh
,
J. W.
Manke
, and
D. P.
Gelopulos
, “
Time frame notion and time response of the models in transient, mid-term and long-term stability programs
,”
IEEE Trans. Power Appar. Syst.
PAS-103
,
143
151
(
1984
).
17.
Y.
Han
,
M.
Yang
,
H.
Li
,
P.
Yang
,
L.
Xu
,
E. A. A.
Coelho
, and
J. M.
Guerrero
, “
Modeling and stability analysis of LCL-type grid-connected inverters: A comprehensive overview
,”
IEEE Access
7
,
114975
115001
(
2019
).
18.
B. G.
Lamme
, “
The technical story of the synchronous converter
,”
J. Am. Inst. Electr. Eng.
39
,
21
26
(
1920
).
19.
F. R.
Schleif
and
J. H.
White
, “
Damping for the northwest—Southwest tieline oscillations—An analog study
,”
IEEE Trans. Power Appar. Syst.
PAS-85
,
1239
1247
(
1966
).
20.
D. N.
Walker
,
C. E. J.
Bowler
,
R. L.
Jackson
, and
D. A.
Hodges
, “
Results of subsynchronous resonance test at Mohave
,”
IEEE Trans. Power Appar. Syst.
94
,
1878
1889
(
1975
).
21.
R. G.
Farmer
,
A. L.
Schwalb
, and
E.
Katz
, “
Navajo project report on subsynchronous resonance analysis and solutions
,”
IEEE Trans. Power Appar. Syst.
96
,
1226
1232
(
1977
).
22.
M.
Bahrman
,
E. V.
Larsen
,
R. J.
Piwko
, and
H. S.
Patel
, “
Experience with HVDC—Turbine-generator torsional interaction at Square Butte
,”
IEEE Trans. Power Appar. Syst.
PAS-99
,
966
975
(
1980
).
23.
A.
Myles
, “
Application of power system stabilisers on the Anglo-Scottish interconnection. British system operation experience
,”
IEE Proc. C
135
,
233
237
(
1988
).
24.
G.
Liu
,
Z.
Xu
,
Y.
Huang
, and
W.
Pan
, “
Analysis of inter-area oscillations in the South China Interconnected Power System
,”
Electric Power Syst. Res.
70
,
38
45
(
2004
).
25.
J.
Adams
,
C.
Carter
, and
S. H.
Huang
, “
ERCOT experience with sub-synchronous control interaction and proposed remediation
,” in
Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference,
2012
.
26.
Y.
Li
,
L.
Fan
, and
Z.
Miao
, “
Replicating real-world wind farm SSR events
,”
IEEE Trans. Power Delivery
35
,
339
348
(
2020
).
27.
S.-H.
Huang
,
J.
Schmall
,
J.
Conto
,
J.
Adams
,
Y.
Zhang
, and
C.
Carter
, “
Voltage control challenges on weak grids with high penetration of wind generation: ERCOT experience
,” in
IEEE Power and Energy Society General Meeting
(
IEEE
,
2012
).
28.
L.
Wang
,
X.
Xie
,
Q.
Jiang
,
H.
Liu
,
Y.
Li
, and
H.
Liu
, “
Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system
,”
IEEE Trans. Power Syst.
30
,
2772
2779
(
2015
).
29.
J.
Lyu
,
X.
Cai
, and
M.
Molinas
, “
Frequency domain stability analysis of MMC-based HVdc for wind farm integration
,”
IEEE J. Emerging Sel. Top. Power Electron.
4
,
141
151
(
2016
).
30.
H.
Liu
,
X.
Xie
,
J.
He
,
T.
Xu
,
Z.
Yu
,
C.
Wang
, and
C.
Zhang
, “
Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks
,”
IEEE Trans. Power Syst.
32
,
4708
4720
(
2017
).
31.
H.
Liu
and
X.
Xie
, “
Impedance network modeling and quantitative stability analysis of sub-/super-synchronous oscillations for large-scale wind power systems
,”
IEEE Access
6
,
34431
34438
(
2018
).
32.
Y.
Li
,
T.
An
,
D.
Zhang
,
X.
Pei
,
K.
Ji
, and
G.
Tang
, “
Analysis and suppression control of high frequency resonance for MMC-HVDC system
,”
IEEE Trans. Power Deliv.
36
,
3867
3881
(
2021
).
33.
H.
Saad
, see https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxodmRjcmVwbGljYXdvcmtzaG9wfGd4OjcwNjI1ZjBjMjJiNDRmODM for “
Performance analysis of INELFE link with control replicas
” (
2021
).
34.
D.
Shu
,
X.
Xie
,
H.
Rao
,
X.
Gao
,
Q.
Jiang
, and
Y.
Huang
, “
Sub- and super-synchronous interactions between STATCOMs and weak AC/DC transmissions with series compensations
,”
IEEE Trans. Power Electron.
33
,
7424
7437
(
2018
).
35.
G.
Chen
,
C.
Liu
,
C.
Fan
,
X.
Han
,
H.
Shi
,
G.
Wang
, and
D.
Ai
, “
Research on damping control index of ultra-low-frequency oscillation in hydro-dominant power systems
,”
Sustainability
12
,
7316
(
2020
).
36.
C.
Yin
,
X.
Xie
,
S.
Xu
, and
C.
Zou
, “
Review of oscillations in VSC‐HVDC systems caused by control interactions
,”
J. Eng.
2019
,
1204
1207
.
37.
J.
Li
,
X.
Xie
,
J.
Yang
,
H.
Li
,
Z.
Shi
,
K.
Wang
,
C.
Fu
, and
W.
Yang
, “
Analysis and suppression of subsynchronous oscillation of Rudong wind power through MMC-HVDC system
,” in
Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2021)
(
IET
,
2021
), pp.
151
158
.
38.
J.
Machowski
,
Z.
Lubosny
,
J. W.
Bialek
et al,
Power system dynamics: stability and control
,
3st ed.
(
John Wiley & Sons
,
New York
,
2020
).
39.
M.
Zhao
,
X.
Yuan
,
J.
Hu
, and
Y.
Yan
, “
Voltage dynamics of current control time-scale in a VSC-connected weak grid
,”
IEEE Trans. Power Syst.
31
,
2925
2937
(
2016
).
40.
X.
Wang
and
F.
Blaabjerg
, “
Harmonic stability in power electronic-based power systems: Concept, modeling, and analysis
,”
IEEE Trans. Smart Grid
3053
,
2858
(
2018
).
41.
L.
Harnefors
, “
Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices
,”
IEEE Trans. Ind. Electron.
54
,
2239
2248
(
2007
).
42.
J.
Lyu
,
X.
Cai
,
M.
Amin
, and
M.
Molinas
, “
Sub-synchronous oscillation mechanism and its suppression in MMC-based HVDC connected wind farms
,”
Transm. Distrib. IET Gener.
12
,
1021
1029
(
2018
).
43.
H.
Liu
and
X.
Xie
, “
Comparative studies on the impedance models of VSC-based renewable generators for SSI stability analysis
,”
IEEE Trans. Energy Convers.
34
,
1442
1453
(
2019
).
44.
M.
Farrokhabadi
,
C. A.
Cañizares
,
J. W.
Simpson-Porco
,
E.
Nasr
,
L.
Fan
,
P. A.
Mendoza-Araya
,
R.
Tonkoski
,
U.
Tamrakar
,
N.
Hatziargyriou
,
D.
Lagos
,
R. W.
Wies
,
M.
Paolone
,
M.
Liserre
,
L.
Meegahapola
,
M.
Kabalan
,
A. H.
Hajimiragha
,
D.
Peralta
,
M. A.
Elizondo
,
K. P.
Schneider
,
F. K.
Tuffner
, and
J.
Reilly
, “
Microgrid stability definitions, analysis, and examples
,”
IEEE Trans. Power Syst.
35
,
13
29
(
2020
).
45.
L. P.
Kunjumuhammed
,
B. C.
Pal
,
C.
Oates
, and
K. J.
Dyke
, “
Electrical oscillations in wind farm systems: Analysis and insight based on detailed modeling
,”
IEEE Trans. Sustainable Energy
7
,
51
62
(
2016
).
46.
L.
Chun
, “
Unstable operation of photovoltaic inverter from field experiences
,”
IEEE Trans. Power Delivery
33
,
1013
1015
(
2018
).
47.
C.
Concordia
, “
Damping and synchronizing torques
,”
Electr. Eng.
70
,
613
(
1951
).
48.
C.
Concordia
,
S. B.
Crary
, and
J. M.
Lyons
, “
Stability characteristics of turbine generators
,”
Electr. Eng.
57
,
732
744
(
1938
).
49.
F. P.
Demello
and
C.
Concordia
, “
Concepts of synchronous machine stability as affected by excitation control
,”
IEEE Trans. Power Appar. Syst.
PAS-88
,
316
329
(
1969
).
50.
V.
Arcidiacono
,
E.
Ferrari
,
R.
Marconato
,
J. D.
Ghali
, and
D.
Grandez
, “
Evaluation and improvement of electromechanical oscillation damping by means of eigenvalue-eigenvector analysis. Practical results in the Central Peru Power System
,”
IEEE Trans. Power Appar. Syst.
PAS-99
,
769
778
(
1980
).
51.
F.
deMello
and
T.
Laskowski
, “
Concepts of power system dynamic stability
,”
IEEE Trans. Power Appar. Syst.
94
,
827
833
(
1975
).
52.
H. A. M.
Moussa
and
Y.-n.
Yu
, “
Dynamic interaction of multi-machine power system and excitation control
,”
IEEE Trans. Power Appar. Syst.
PAS-93
,
1150
1158
(
1974
).
53.
T.
Knüppel
,
J. N.
Nielsen
,
K. H.
Jensen
,
A.
Dixon
, and
J.
Østergaard
, “
Small-signal stability of wind power system with full-load converter interfaced wind turbines
,”
IET Renewable Power Gener.
6
,
79
91
(
2012
).
54.
J.
Quintero
,
V.
Vittal
,
G. T.
Heydt
, and
H.
Zhang
, “
The impact of increased penetration of converter control-based generators on power system modes of oscillation
,”
IEEE Trans. Power Syst.
29
,
2248
2256
(
2014
).
55.
W.
Du
,
J.
Bi
,
J.
Cao
, and
H. F.
Wang
, “
A method to examine the impact of grid connection of the DFIGs on power system electromechanical oscillation modes
,”
IEEE Trans. Power Syst.
31
,
3775
3784
(
2016
).
56.
M.
Alizadeh Bidgoli
,
S.
Atrian
,
W.
Yang
, and
F. M.
Gonzalez-Longatt
, “
Transient stability assessment of power system incorporating DFIM-based pumped storage hydropower and wind farm
,” in
Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory
(
Springer Nature
,
2021
), pp.
131
152
.
57.
M. A.
Bidgoli
,
W.
Yang
, and
A.
Ahmadian
, “
DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance
,”
Renewable Energy
159
,
72
86
(
2020
).
58.
N.
Ding
,
Z.
Lu
,
Y.
Qiao
, and
Y.
Min
, “
Simplified equivalent models of large-scale wind power and their application on small-signal stability
,”
J. Mod. Power Syst. Clean Energy
1
,
58
64
(
2013
).
59.
IEEE Subsynchronous Resonance Working Group
, “
Proposed terms and definitions for subsynchronous oscillations
,”
IEEE Trans. Power Appar. Syst.
PAS-99
,
506
511
(
1980
).
60.
Subsynchronous Resonance Working Group of the System Dynamic Per-formance Subcommittee
, “
Reader's guide to subsynchronous resonance
,”
IEEE Trans. Power Syst.
7
,
150
157
(
1992
).
61.
M.
Iravani
,
B.
Agrawal
,
D.
Baker
,
C.
Bowler
,
R.
Farmer
,
R.
Hedin
,
E.
Larsen
, and
J.
Tang
, “
Fourth supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems
,”
IEEE Trans. Power Syst.
12
,
1276
1282
(
1997
).
62.
I. M.
Canay
, “
A novel approach to the torsional interaction and electrical damping of the synchronous machine. Part I: Theory
,”
IEEE Trans. Power Appar. Syst.
PAS-101
,
3630
3638
(
1982
).
63.
X.
Xie
,
X.
Zhang
,
H.
Liu
,
H.
Liu
,
Y.
Li
, and
C.
Zhang
, “
Characteristic analysis of subsynchronous resonance in practical wind farms connected to series-compensated transmissions
,”
IEEE Trans. Energy Convers.
32
,
1117
1126
(
2017
).
64.
V.
Mohale
,
T. R.
Chelliah
, and
Y. V.
Hote
, “
Analysis and damping of sub-synchronous oscillations in a 250 MW DFIM hydro unit connected to series compensated 765 kV transmission lines
,”
IEEE Trans. Ind. Appl.
59
,
2234
(
2022
).
65.
H.
Liu
,
X.
Xie
,
X.
Gao
,
H.
Liu
, and
Y.
Li
, “
Stability analysis of SSR in multiple wind farms connected to series-compensated systems using impedance network model
,”
IEEE Trans. Power Syst.
33
,
3118
3128
(
2018
).
66.
Z.
Miao
, “
Impedance-model-based SSR analysis for type 3 wind generator and series-compensated network
,”
IEEE Trans. Energy Convers.
27
,
984
991
(
2012
).
67.
Y.
Song
and
F.
Blaabjerg
, “
Overview of DFIG-based wind power system resonances under weak networks
,”
IEEE Trans. Power Electron.
32
,
4370
4394
(
2017
).
68.
M.
Amin
and
M.
Molinas
, “
Understanding the origin of oscillatory phenomena observed between wind farms and HVdc systems
,”
IEEE J. Emerging Sel. Top. Power Electron.
5
,
378
392
(
2017
).
69.
R.
Shah
,
M.
Barnes
, and
R.
Preece
, “
Characterisation of interaction in an offshore AC grid with large WPPs and VSC-HVDCs
,”
IET Renewable Power Gener.
11
,
723
731
(
2017
).
70.
J. Z.
Zhou
,
H.
Ding
,
S.
Fan
,
Y.
Zhang
, and
A. M.
Gole
, “
Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter
,”
IEEE Trans. Power Delivery
29
,
2287
2296
(
2014
).
71.
A.
Rygg
,
M.
Molinas
,
C.
Zhang
, and
X.
Cai
, “
A modified sequence-domain impedance definition and its equivalence to the dq-domain impedance definition for the stability analysis of AC power electronic systems
,”
IEEE J. Emerging Sel. Top. Power Electron.
4
,
1383
1396
(
2016
).
72.
X.
Wang
,
M. G.
Taul
,
H.
Wu
,
Y.
Liao
,
F.
Blaabjerg
, and
L.
Harnefors
, “
Grid-synchronization stability of converter-based resources—An overview
,”
IEEE Open J. Ind. Appl.
1
,
115
134
(
2020
).
73.
B.
Wen
,
D.
Boroyevich
,
R.
Burgos
,
P.
Mattavelli
, and
Z.
Shen
, “
Analysis of D-Q small-signal impedance of grid-tied inverters
,”
IEEE Trans. Power Electron.
31
,
675
687
(
2016
).
74.
L.
Yin
,
L.
Fan
, and
Z.
Miao
, “
Wind in weak grids: Low-frequency oscillations, subsynchronous oscillations, and torsional interactions
,”
IEEE Trans. Power Syst.
35
,
109
118
(
2020
).
75.
N. P.
Strachan
and
D.
Jovcic
, “
Stability of a variable-speed permanent magnet wind generator with weak AC grids
,”
IEEE Trans. Power Delivery
25
,
2779
2788
(
2010
).
76.
J.
Fang
,
More-Electronics Power Systems: Power Quality and Stability, Power Systems
(
Springer
,
Singapore
,
2021
).
77.
S.
Li
,
Y.
Yan
, and
X.
Yuan
, “
SISO equivalent of MIMO VSC-dominated power systems for voltage amplitude and phase dynamic analyses in current control timescale
,”
IEEE Trans. Energy Convers.
34
,
1454
1465
(
2019
).
78.
Y.
Huang
,
X.
Yuan
,
J.
Hu
, and
P.
Zhou
, “
Modeling of VSC connected to weak grid for stability analysis of DC-link voltage control
,”
IEEE J. Emerging Sel. Top. Power Electron.
3
,
1193
1204
(
2015
).
79.
Y.
Huang
,
X.
Yuan
,
J.
Hu
,
P.
Zhou
, and
D.
Wang
, “
DC-bus voltage control stability affected by AC-bus voltage control in VSCs connected to weak AC grids
,”
IEEE J. Emerging Sel. Top. Power Electron.
4
,
445
457
(
2016
).
80.
H.
Yuan
,
X.
Yuan
, and
J.
Hu
, “
Modeling of grid-connected VSCs for power system small-signal stability analysis in DC-link voltage control timescale
,”
IEEE Trans. Power Syst.
32
,
3981
3991
(
2017
).
81.
H.
Zong
,
C.
Zhang
,
J.
Lyu
,
X.
Cai
,
M.
Molinas
, and
F.
Rao
, “
Generalized MIMO sequence impedance modeling and stability analysis of MMC-HVDC with wind farm considering frequency couplings
,”
IEEE Access
8
,
55602
55618
(
2020
).
82.
H.
Liu
and
J.
Sun
, “
Voltage stability and control of offshore wind farms with AC collection and HVDC transmission
,”
IEEE J. Emerging Sel. Top. Power Electron.
2
,
1181
1189
(
2014
).
83.
L.
Wang
and
M. S.-N.
Thi
, “
Stability analysis of four PMSG-based offshore wind farms fed to an SG-based power system through an LCC-HVDC link
,”
IEEE Trans. Ind. Electron.
60
,
2392
2400
(
2013
).
84.
C.
Li
,
J.
Liang
,
L. M.
Cipcigan
,
W.
Ming
,
F.
Colas
, and
X.
Guillaud
, “
DQ impedance stability analysis for the power-controlled grid-connected inverter
,”
IEEE Trans. Energy Convers.
35
,
1762
1771
(
2020
).
85.
W.
Wu
,
Y.
Chen
,
L.
Zhou
,
A.
Luo
,
X.
Zhou
,
Z.
He
,
L.
Yang
,
Z.
Xie
,
J.
Liu
, and
M.
Zhang
, “
Sequence impedance modeling and stability comparative analysis of voltage-controlled VSGs and current-controlled VSGs
,”
IEEE Trans. Ind. Electron.
66
,
6460
6472
(
2019
).
86.
Y.
Xu
,
H.
Nian
,
B.
Hu
, and
D.
Sun
, “
Impedance modeling and stability analysis of VSG controlled type-IV wind turbine system
,”
IEEE Trans. Energy Convers.
36
,
3438
(
2021
).
87.
G.
Li
,
Y.
Chen
,
A.
Luo
,
Z.
He
,
H.
Wang
,
Z.
Zhu
,
W.
Wu
, and
L.
Zhou
, “
Analysis and mitigation of subsynchronous resonance in series-compensated grid-connected system controlled by a virtual synchronous generator
,”
IEEE Trans. Power Electron.
35
,
11096
11107
(
2020
).
88.
H.
Wu
,
X.
Wang
,
Ł.
Kocewiak
, and
L.
Harnefors
, “
AC impedance modeling of modular multilevel converters and two-level voltage-source converters: Similarities and differences
,” in
IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL)
(
IEEE
,
2018
).
89.
J.
Lyu
,
X.
Zhang
,
X.
Cai
, and
M.
Molinas
, “
Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics
,”
IEEE Trans. Power Electron.
34
,
2134
2148
(
2019
).
90.
Ö. C.
Sakinci
and
J.
Beerten
, “
Generalized dynamic phasor modeling of the MMC for small-signal stability analysis
,”
IEEE Trans. Power Delivery
34
,
991
1000
(
2019
).
91.
M.
Amin
,
A.
Rygg
, and
M.
Molinas
, “
Self-synchronization of wind farm in an MMC-based HVDC system: A stability investigation
,”
IEEE Trans. Energy Convers.
32
,
458
470
(
2017
).
92.
K.
Ji
,
G.
Tang
,
H.
Pang
, and
J.
Yang
, “
Impedance modeling and analysis of MMC-HVDC for offshore wind farm integration
,”
IEEE Trans. Power Delivery
35
,
1488
1501
(
2020
).
93.
T.
Xue
,
J.
Lyu
,
H.
Wang
, and
X.
Cai
, “
A complete impedance model of a PMSG-based wind energy conversion system and its effect on the stability analysis of MMC-HVDC connected offshore wind farms
,”
IEEE Trans. Energy Convers.
36
,
3449
(
2021
).
94.
S.
Zhu
,
L.
Qin
,
K.
Liu
,
K.
Ji
,
Y.
Li
,
Q.
Huai
,
X.
Liao
,
S.
Yang
,
B.
Yue
, and
N.
Mei
, “
Impedance modeling of modular multilevel converter in D-Q and modified sequence domains
,”
IEEE J. Emerging Sel. Top. Power Electron.
10
,
4361
(
2020
).
95.
Y.
Tu
,
J.
Liu
,
Z.
Liu
,
D.
Xue
, and
L.
Cheng
, “
Impedance-based analysis of digital control delay in grid-tied voltage source inverters
,”
IEEE Trans. Power Electron.
35
,
11666
11681
(
2020
).
96.
L.
Harnefors
,
X.
Wang
,
A. G.
Yepes
, and
F.
Blaabjerg
, “
Passivity-based stability assessment of grid-connected VSCs—An overview
,”
IEEE J. Emerging Sel. Top. Power Electron.
4
,
116
125
(
2016
).
97.
T.
Li
,
A. M.
Gole
, and
C.
Zhao
, “
Harmonic instability in MMC-HVDC converters resulting from internal dynamics
,”
IEEE Trans. Power Delivery
31
,
1738
1747
(
2016
).
98.
H.
Saad
,
Y.
Fillion
,
S.
Deschanvres
,
Y.
Vernay
, and
S.
Dennetière
, “
On resonances and harmonics in HVDC-MMC station connected to AC grid
,”
IEEE Trans. Power Delivery
32
,
1565
1573
(
2017
).
99.
J.
He
,
Y. W.
Li
,
D.
Bosnjak
, and
B.
Harris
, “
Investigation and active damping of multiple resonances in a parallel-inverter-based microgrid
,”
IEEE Trans. Power Electron.
28
,
234
246
(
2013
).
100.
F.
Cavazzana
,
T.
Caldognetto
,
P.
Mattavelli
,
M.
Corradin
, and
I.
Toigo
, “
Analysis of current control interaction of multiple parallel grid-connected inverters
,”
IEEE Trans. Sustainable Energy
9
,
1740
1749
(
2018
).
101.
M.
Lu
,
X.
Wang
,
P. C.
Loh
, and
F.
Blaabjerg
, “
Resonance interaction of multiparallel grid-connected inverters with LCL filter
,”
IEEE Trans. Power Electron.
32
,
894
899
(
2017
).
102.
M.
Lu
,
Y.
Yang
,
B.
Johnson
, and
F.
Blaabjerg
, “
An interaction-admittance model for multi-inverter grid-connected systems
,”
IEEE Trans. Power Electron.
34
,
7542
7557
(
2019
).
103.
E.
Ebrahimzadeh
,
F.
Blaabjerg
,
X.
Wang
, and
C. L.
Bak
, “
Harmonic stability and resonance analysis in large PMSG-based wind power plants
,”
IEEE Trans. Sustainable Energy
9
,
12
23
(
2018
).
104.
Y.
Wang
,
X.
Wang
,
F.
Blaabjerg
, and
Z.
Chen
, “
Harmonic instability assessment using state-space modeling and participation analysis in inverter-fed power systems
,”
IEEE Trans. Ind. Electron.
64
,
806
816
(
2017
).
105.
C.
Yoon
,
H.
Bai
,
R. N.
Beres
,
X.
Wang
,
C. L.
Bak
, and
F.
Blaabjerg
, “
Harmonic stability assessment for multiparalleled, grid-connected inverters
,”
IEEE Trans. Sustainable Energy
7
,
1388
1397
(
2016
).
106.
J.
Liu
,
X.
Tao
,
M.
Yu
,
Y.
Xia
, and
W.
Wei
, “
Impedance modeling and analysis of three-phase voltage-source converters viewing from DC side
,”
IEEE J. Emerging Sel. Top. Power Electron.
8
,
3906
3916
(
2020
).
107.
L.
Xu
,
L.
Fan
, and
Z.
Miao
, “
DC impedance-model-based resonance analysis of a VSC–HVDC System
,”
IEEE Trans. Power Delivery
30
,
1221
1230
(
2015
).
108.
M.
Amin
,
M.
Molinas
,
J.
Lyu
, and
X.
Cai
, “
Impact of power flow direction on the stability of VSC-HVDC seen from the impedance Nyquist plot
,”
IEEE Trans. Power Electron.
32
,
8204
8217
(
2017
).
109.
G.
Pinares
and
M.
Bongiorno
, “
Modeling and analysis of VSC-based HVDC systems for DC network stability studies
,”
IEEE Trans. Power Delivery
31
,
848
856
(
2016
).
110.
Y.
Song
and
C.
Breitholtz
, “
Nyquist stability analysis of an AC-grid connected VSC-HVDC system using a distributed parameter DC cable model
,”
IEEE Trans. Power Delivery
31
,
898
907
(
2016
).
111.
Y.
Xu
,
M.
Zhang
,
L.
Fan
, and
Z.
Miao
, “
Small-signal stability analysis of type-4 wind in series-compensated networks
,”
IEEE Trans. Energy Convers.
35
,
529
538
(
2020
).
112.
E. V.
Larsen
and
D. A.
Swann
, “
Applying power system stabilizers Part I: General concepts
,”
IEEE Trans. Power Appar. Syst.
PAS-100
,
3017
3024
(
1981
).
113.
E.
Larsen
and
D.
Swann
, “
Applying power system stabilizers Part III: Practical considerations
,”
IEEE Trans. Power Appar. Syst.
PAS-100
,
3034
3046
(
1981
).
114.
E.
Larsen
and
D.
Swann
, “
Applying power system stabilizers Part II: Performance objectives and tuning concepts
,”
IEEE Trans. Power Appar. Syst.
PAS-100
,
3025
3033
(
1981
).
115.
M.
Alizadeh Bidgoli
,
D.
Ganjali
,
W.
Yang
, and
S.
Atrian
, “
Small signal stability improvement of pumped storage hydropower using wide area signal considering wind farm
,” in
Wide Area Power Systems Stability, Protection, and Security
(
Springer
,
2021
), pp.
249
271
.
116.
M.
Aboul-Ela
,
A.
Sallam
,
J.
McCalley
, and
A.
Fouad
, “
Damping controller design for power system oscillations using global signals
,”
IEEE Trans. Power Syst.
11
,
767
773
(
1996
).
117.
H. F.
Wang
,
F. J.
Swift
, and
M.
Li
, “
Indices for selecting the best location of PSSs or FACTS-based stabilisers in multimachine power systems: A comparative study
,”
IEE Proc. - Gener., Transm. Distrib.
144
,
155
159
(
1997
).
118.
R.
Fleming
,
M.
Mohan
, and
K.
Parvatisam
, “
Selection of parameters of stabilizers in multimachine power systems
,”
IEEE Trans. Power Appar. Syst.
PAS-100
,
2329
2333
(
1981
).
119.
A.
Doi
and
S.
Abe
, “
Coordinated synthesis of power system stabilizers in multimachine power systems
,”
IEEE Trans. Power Appar. Syst.
PAS-103
,
1473
1479
(
1984
).
120.
S.
Lefebvre
, “
Tuning of stabilizers in multimachine power systems
,”
IEEE Trans. Power Appar. Syst.
PAS-102
,
290
299
(
1983
).
121.
X.
Xie
,
X.
Guo
, and
Y.
Han
, “
Mitigation of multimodal SSR using SEDC in the Shangdu series-compensated power system
,”
IEEE Trans. Power Syst.
26
,
384
391
(
2011
).
122.
J.
Fang
,
X.
Li
,
H.
Li
, and
Y.
Tang
, “
Stability improvement for three-phase grid-connected converters through impedance reshaping in quadrature-axis
,”
IEEE Trans. Power Electron.
33
,
8365
8375
(
2018
).
123.
X.
Zhang
,
D.
Xia
,
Z.
Fu
,
G.
Wang
, and
D.
Xu
, “
An improved feedforward control method considering PLL dynamics to improve weak grid stability of grid-connected inverters
,”
IEEE Trans. Ind. Appl.
54
,
5143
5151
(
2018
).
124.
X.
Zhang
,
S.
Fu
,
W.
Chen
,
N.
Zhao
,
G.
Wang
, and
D.
Xu
, “
A symmetrical control method for grid-connected converters to suppress the frequency coupling under weak grid conditions
,”
IEEE Trans. Power Electron.
35
,
13488
13499
(
2020
).
125.
L.
Fan
, “
Modeling type-4 wind in weak grids
,”
IEEE Trans. Sustainable Energy
10
,
853
864
(
2019
).
126.
K. M.
Alawasa
,
Y. A.-R. I.
Mohamed
, and
W.
Xu
, “
Active mitigation of subsynchronous interactions between PWM voltage-source converters and power networks
,”
IEEE Trans. Power Electron.
29
,
121
134
(
2014
).
127.
L.
Huang
,
H.
Xin
,
Z.
Li
,
P.
Ju
,
H.
Yuan
,
Z.
Lan
, and
Z.
Wang
, “
Grid-synchronization stability analysis and loop shaping for PLL-based power converters with different reactive power control
,”
IEEE Trans. Smart Grid
11
,
501
516
(
2020
).
128.
J. A.
Suul
,
S.
D'Arco
,
P.
Rodríguez
, and
M.
Molinas
, “
Impedance-compensated grid synchronisation for extending the stability range of weak grids with voltage source converters
,”
IET Gener., Transm. Distrib.
10
,
1315
1326
(
2016
).
129.
L.
Huang
,
H.
Xin
,
Z.
Wang
,
W.
Huang
, and
K.
Wang
, “
An adaptive phase-locked loop to improve stability of voltage source converters in weak grids
,” in
IEEE Power Energy Society General Meeting (PESGM)
(
IEEE
,
2018
).
130.
D.
Yang
,
X.
Wang
,
F.
Liu
,
K.
Xin
,
Y.
Liu
, and
F.
Blaabjerg
, “
Symmetrical PLL for SISO impedance modeling and enhanced stability in weak grids
,”
IEEE Trans. Power Electron.
35
,
1473
1483
(
2020
).
131.
S.
Sang
,
N.
Gao
,
X.
Cai
, and
R.
Li
, “
A novel power-voltage control strategy for the grid-tied inverter to raise the rated power injection level in a weak grid
,”
IEEE J. Emerging Sel. Top. Power Electron.
6
,
219
232
(
2018
).
132.
H. A.
Mohammadpour
and
E.
Santi
, “
SSR damping controller design and optimal placement in rotor-side and grid-side converters of series-compensated DFIG-based wind farm
,”
IEEE Trans. Sustainable Energy
6
,
388
399
(
2015
).
133.
L.
Fan
,
R.
Kavasseri
,
Z. L.
Miao
, and
C.
Zhu
, “
Modeling of DFIG-based wind farms for SSR analysis
,”
IEEE Trans. Power Delivery
25
,
2073
2082
(
2010
).
134.
I.
Vieto
and
J.
Sun
, “
Damping of subsynchronous resonance involving type-III wind turbines
,” in
IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL)
(
IEEE
,
2015
).
135.
L.
Fan
and
Z.
Miao
, “
Mitigating SSR using DFIG-based wind generation
,”
IEEE Trans. Sustainable Energy
3
,
349
358
(
2012
).
136.
B.
Hu
,
H.
Nian
,
M.
Li
,
Y.
Xu
,
Y.
Liao
, and
J.
Yang
, “
Impedance-based analysis and stability improvement of DFIG system within PLL bandwidth
,”
IEEE Trans. Ind. Electron.
69
,
5803
5814
(
2022
).
137.
S. M.
Hoseinizadeh
,
S.
Ouni
,
H.
Karimi
,
M.
Karimi-Ghartemani
, and
K. L.
Lian
, “
Comparison of PLL-based and PLL-less vector current controllers
,”
IEEE J. Emerging Sel. Top. Power Electron.
10
,
436
445
(
2022
).
138.
S.
Gao
,
H.
Zhao
,
Y.
Gui
,
D.
Zhou
, and
F.
Blaabjerg
, “
An improved direct power control for doubly fed induction generator
,”
IEEE Trans. Power Electron.
36
,
4672
4685
(
2021
).
139.
B.
Hu
,
H.
Nian
,
S.
Sahoo
,
F.
Blaabjerg
,
Y.
Zhang
, and
Z.
Xu
, “
Stability analysis of DFIG system connected with high-frequency capacitive grid based on closed-loop current control and direct power control
,” in
24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe)
(
IEEE
,
2022
).
140.
Q.
Guo
,
H.
Guo
, and
L.
Huang
, “
Effect of grid voltage feedforward on VSC-HVDC stability in weak power grid
,”
Autom. Electric Power Syst.
42
,
139
144
(
2018
).
141.
J.
Zhu
,
J.
Hu
,
L.
Lin
,
Y.
Wang
, and
C.
Wei
, “
High-frequency oscillation mechanism analysis and suppression method of VSC-HVDC
,”
IEEE Trans. Power Electron.
35
,
8892
8896
(
2020
).
142.
J.
Man
,
L.
Chen
,
V.
Terzija
, and
X.
Xie
, “
Mitigating high-frequency resonance in MMC-HVDC systems using adaptive notch filters
,”
IEEE Trans. Power Syst.
37
,
2086
2096
(
2021
).
143.
X.
Guo
,
B.
Liu
,
H.
Mei
,
J.
Liu
,
Y.
Hualong
, and
F.
Cao
, “
Analysis and suppression of resonance between AC and DC systems in Chongqing-Hubei back-to-back HVDC project of China
,”
Autom. Electric Power Syst.
44
,
157
164
(
2020
).
144.
X.
Guo
,
B.
Yuan
,
X.
Li
, and
C.
Yin
, “
Research on the high frequency oscillation of MMC-HVDC integrated into renewable energy system
,” in
IEEE Southern Power Electronics Conference
(
IEEE
,
2021
).
145.
Y.
Li
, P. Hui, K. Ming, J. Lu, K. Ji, and G. Tang, “Compensation control and parameters design for high frequency resonance suppression of MMC-HVDC system,”
CSEE J. Power Energy Syst.
7
,
1161
1175
(
2020
).
146.
D.
Yang
,
X.
Ruan
, and
H.
Wu
, “
Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition
,”
IEEE Trans. Power Electron.
29
,
5795
5805
(
2014
).
147.
H.-C.
Chen
,
P.-T.
Cheng
,
X.
Wang
, and
F.
Blaabjerg
, “
A passivity-based stability analysis of the active damping technique in the offshore wind farm applications
,”
IEEE Trans. Ind. Appl.
54
,
5074
5082
(
2018
).
148.
X.
Chen
,
Y.
Zhang
,
S.
Wang
,
J.
Chen
, and
C.
Gong
, “
Impedance-phased dynamic control method for grid-connected inverters in a weak grid
,”
IEEE Trans. Power Electron.
32
,
274
283
(
2017
).
149.
Q.
Qian
,
S.
Xie
,
L.
Huang
,
J.
Xu
,
Z.
Zhang
, and
B.
Zhang
, “
Harmonic suppression and stability enhancement for parallel multiple grid-connected inverters based on passive inverter output impedance
,”
IEEE Trans. Ind. Electron.
64
,
7587
7598
(
2017
).
150.
J.
Roldán-Pérez
,
A.
Rodríguez-Cabero
, and
M.
Prodanović
, “
Harmonic virtual impedance design for parallel-connected grid-tied synchronverters
,”
IEEE J. Emerging Sel. Top. Power Electron.
7
,
493
503
(
2019
).
151.
X.
Wang
,
F.
Blaabjerg
, and
Z.
Chen
, “
Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid
,”
IEEE Trans. Ind. Appl.
50
,
452
461
(
2014
).
152.
X.
Xie
,
P.
Liu
,
K.
Bai
, and
Y.
Han
, “
Applying improved blocking filters to the SSR problem of the Tuoketuo power system
,”
IEEE Trans. Power Syst.
28
,
227
(
2013
).
153.
X.
Xie
,
L.
Wang
, and
Y.
Han
, “
Combined application of SEDC and GTSDC for SSR mitigation and its field tests
,”
IEEE Trans. Power Syst.
31
,
769
776
(
2016
).
154.
X.
Wang
,
F.
Blaabjerg
,
M.
Liserre
,
Z.
Chen
,
J.
He
, and
Y.
Li
, “
An active damper for stabilizing power-electronics-based AC systems
,”
IEEE Trans. Power Electron.
29
,
3318
3329
(
2014
).
155.
L.
Jia
,
X.
Ruan
,
W.
Zhao
,
Z.
Lin
, and
X.
Wang
, “
An adaptive active damper for improving the stability of grid-connected inverters under weak grid
,”
IEEE Trans. Power Electron.
33
,
9561
9574
(
2018
).
You do not currently have access to this content.