Various techniques to enhance the performance of thermoelectric materials have been reviewed in an unified way. The influence of synthesis techniques, post-synthesis treatment, microstructure, nanostructure, doping, and interface on thermoelectric materials' transport properties has been discussed. The research ideas given by researchers are presented in tabular forms so that young researchers and engineers can find the potential research gaps and best practices in this field. Conclusions drawn from this review would give research directions to the new researchers working in thermoelectric materials.

1.
M. G.
Kanatzidis
et al, “
Nanostructutred thermoelectrics: A new paradigm?
,”
Chem. Mater.
22
,
648
659
(
2009
).
2.
T.
Chen
et al, “
Cross-scale porous structure design leads to optimized thermoelectric performance and high output power for CaMnO3 ceramics and their uni-leg modules
,”
Appl. Mater. Today
29
,
101557
(
2022
).
3.
K.
Zhao
et al, “
Solid-state explosive reaction for nanoporous bulk thermoelectric material
,”
Adv. Mater.
29
,
1701148
(
2017
).
4.
J.
Zhang
et al, “
Mechanical properties and thermal stability of the high-thermoelectric- performance Cu2Se compound
,”
ACS Appl. Mater. Interfaces
13
,
45736
45743
(
2021
).
5.
G. S.
Snyder
and
E. S.
Toberer
, “
Complex thermoelectric materials
,”
Nat. Mater.
7
,
105
(
2008
).
6.
M. G.
Kanatzidis
et al, “
New and old concepts in thermoelectric materials
,”
Angew. Chem., Int. Ed.
48
,
8616
8639
(
2012
).
7.
R.
Moshwan
et al, “
Eco-friendly SnTe thermoelectric materials: Progress and future challenges
,”
Adv. Funct. Mater.
27
(
43
),
1703278
(
2017
).
8.
J.
Feng
et al, “
An overview of thermoelectric films: Fabrication techniques, classification and regulation methods
,”
Chin. Phys. B
27
(
4
),
047210
(
2018
).
9.
J.
Mao
et al, “
Advances in thermoelectric
,”
Adv. Phys.
67
(
2
),
69
147
(
2018
).
10.
N.
Jaziri
et al, “
A comprehensive review of Thermoelectric Generators: Technologies and common applications
,”
Energy Rep.
6
,
264
287
(
2020
).
11.
D.
Champier
, “
Thermoelectric generators: A review of applications
,”
Energy Convers. Manage.
140
,
167
181
(
2017
).
12.
R.
Venkatasubramanian
et al, “
Thin-film thermoelectric devices with high room-temperature figures of merit
,”
Nature
413
,
597
602
(
2011
).
13.
T. M.
Tritt
, “
Thermoelectric phenomena, materials, and applications
,”
Annu. Rev. Mater. Res.
41
,
433
448
(
2011
).
14.
N.
Xu
et al, “
Topological insulators for thermoelectric
,”
npj Quantum Mater.
2
,
51
(
2017
).
15.
A.
Safique
and
Y.
Shin
, “
Thermoelectric and phonon transport properties of two dimensional IV–VI compounds
,”
Nature
7
,
506
(
2016
).
16.
Z.
Chen
et al, “
Nanostructured thermoelectric materials: Current research and future challenge
,”
Prog. Nat. Sci.
22
(
6
),
535
549
(
2012
).
17.
Y.
Zhang
et al, “
Lead-free SnTe-based compounds as advanced thermoelectric
,”
Mater. Today Phys.
19
,
100405
(
2021
).
18.
A.
Alashkar
and
A. H.
Alami
, “
Energy harvesting materials: Overview of thermoelectrical material
,”
Ref. Module Mater. Sci. Mater. Eng.
4
,
319
325
(
2021
).
19.
H. B.
Radousky
and
H.
Liang
, “
Energy harvesting: An integrated view of materials, devices and applications
,”
Nanotechnology
23
,
502001
(
2012
).
20.
L.
Galvani
,
De Viribus Electricitatis in Motu Musculari: Commentarius
(
Bologna, Tip. Istituto delle Scienze
,
Bologna
,
1791
).
21.
A.
Volta
,
Le Opere di Alessandro Volta
(
Edizione Nazionale Volume Primo UlricoHoepli
,
Milan
,
1918
).
22.
T. J.
Seebeck
, “
Ueber die magnetifche polarifation der metalle und erze durch temperaturdiffernz
,”
Ann. Phys.
82
,
253
286
(
1826
).
23.
H.
Oersted
, “
Notiz von neuen elektrisch-magnetischen verfuchen des Herrn Seebeck in Berlin
,”
Ann. Phys.
73
,
430
432
(
1823
).
24.
J.
Fouier
and
H.
Oersted
, “
Sur quelquesnouvelles exp ériences thermoélectrique faites par M. le Baron Fourier et M. Oersted
,”
Ann. Chim. Phys.
24
,
375
389
(
1823
).
25.
J. C. A.
Peltier
, “
Experiments on the heat effects of electric currents
,”
Ann. Phys.
56
,
371
386
(
1834
).
26.
E.
Lenz
, “
Einige versuche im gebiete des Galvanismus
,”
Ann. Phys.
120
,
342
349
(
1838
).
27.
W.
Thomson
, “
On the dynamical theory of heat; with numerical results deduced from Mr. Joule's equivalent of thermal unit and M. Regnault's observation non steam
,”
Math. Phys. Papers
1
,
175
183
(
1851
).
28.
L. R. S.
Rayleigh
, “
On the thermodynamic efficiency of thermopile
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
20
,
361
363
(
1885
).
29.
A. F.
Ioffe
,
Semiconductor Thermoelements and Thermoelectric Cooling
(
Infosearch
,
London
,
1957
).
30.
R.
Venkatasubramanian
et al, “
MOCVD of Bi 2 Te 3, Sb 2 Te 3 and their superlattice structures for thin-film thermoelectric applications
,”
J. Cryst. Growth
170
,
817
821
(
1997
).
31.
G. D.
Mahan
and
J. O.
Sofo
, “
The best Thermoelectric
,”
Proc. Natl. Acad. Sci. U. S. A.
93
,
7436
7439
(
1996
).
32.
H. J.
Goldsmid
and
R. W.
Douglas
, “
The use of semiconductors in thermoelectric refrigeration
,”
Br. J. Appl. Phys.
5
,
386
(
1954
).
33.
K.
Koumoto
and
T.
Mori
,
Thermoelectric Nanomaterials
(
Springer
,
2005
).
34.
S.
Singh
et al, “
High thermopower in ( 00 l )-oriented nanocrystalline Bi-Sb-Te thin films produced by one step method
,”
Vacuum
165
,
12
18
(
2019
).
35.
M.
Bala
et al, “
Effect of thermal annealing on structural, electrical and thermoelectric properties of p-type Bi 0.5 Sb 1.5 Te 3
,”
AIP Conf. Proc.
2115
,
030326
(
2019
).
36.
K.
Yamauchi
and
M.
Takashiri
, “
Highly oriented crystal growth of nanocrystalline Bismuth Telluride thin films with anisotropic thermoelectric properties using two-step treatment
,”
J. Alloys Compd.
698
,
977
983
(
2017
).
37.
M.
Takashiri
et al, “
Anisotropic analysis of nanocrystalline Bismuth Telluride thin films treated by homogeneous electron beam irradiation
,”
Mater. Trans.
58
(
3
),
513
519
(
2017
).
38.
G.
Zuo
et al, “
Ion beam irradiation effect on thermoelectric properties of Bi 2 Te 3 and Sb 2 Te 3 thin films
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
358
,
229
235
(
2015
).
39.
B.
Ahmad
et al, “
Enhancement of thermoelectrical performance in Au-ion implanted V 2 O 5 thin films
,”
RSC Adv.
7
,
50648
(
2017
).
40.
T. C.
Harman
et al, “
Quantum dot supperlattice thermoelectric materials and devices
,”
Science
297
,
2229
2232
(
2002
).
41.
W. S.
Capinski
et al, “
Thermal-conductivity measurement of GaAs/AlAs superlattices using a picoseconds optical pump-and-probe technique
,”
Phys. Rev. B
59
,
8105
8113
(
1999
).
42.
S. T.
Huxtable
et al, “
Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices
,”
Appl. Phys. Lett.
80
,
1737
1739
(
2002
).
43.
P. Y.
Yu
et al,
Fundamentals of Semiconductors: Physics and Materials Properties
,
3rd ed.
(
Springer
,
Berlin, New York
,
2001
).
44.
J. R.
Szczech
et al, “
Enhancement of the thermoelectric properties in nanoscale and nanostructured materials
,”
J. Mater. Chem.
21
(
12
),
4037
4055
(
2011
).
45.
J.
Minnich
et al, “
Bulk nanostructured thermoelectric materials: Current research and future prospects
,”
Energy Environ. Sci.
2
(
5
),
466
479
(
2009
).
46.
L. D.
Hicks
and
M. S.
Dresselhaus
, “
Effect of quantum-well structures on the thermoelectric figure of merit
,”
Phys. Rev. B
47
,
12727
(
1993
).
47.
L. D.
Hicks
and
M. S.
Dresselhaus
, “
Thermoelectric figure of Merit of one dimensional conductor
,”
Phys. Rev. B
47
,
16631
(
1993
).
48.
G. S.
Kumar
et al, “
Experimental determinations of the Lorenz number
,”
J. Mater. Sci.
28
,
4261
(
1993
).
49.
G. A.
Slack
, “
New materials and performance limits for thermoelectric cooling
,” in
CRC Handbook of Thermoelectrics
edited by
D. M.
Rowe
(
CRC Press
Boca Raton
,
1995
), pp.
407
440
.
50.
G. A.
Slack
, “
Design concept for improved thermoelectric materials
,”
MRS Online Proc. Libr.
478
,
47
54
(
1997
).
51.
H.
Adachi
et al, “
Theory of spin Seebeck effect
,”
Rep. Prog. Phys.
76
,
036501
(
2013
).
52.
M.
Johnson
and
R. H.
Silsbee
, “
Thermodynamic analysis of interfacial transport and of the thermo-magneto-electric system
,”
Phys. Rev. B
35
,
4959
4972
(
1987
).
53.
K.
Uchida
et al, “
Observation of the spin Seebeck effect
,”
Nature
455
,
778
781
(
2008
).
54.
S. O.
Valenzuela
and
M.
Tinkham
, “
Direct electronic measurement of spin Hall effect
,”
Nature
442
,
176
(
2006
).
55.
M.-Y.
Kim
et al, “
Designing efficient spin Seebeck-based thermoelectric devices via simultaneous optimization of bulk and interface properties
,”
Energy Environ. Sci.
14
,
3480
3491
(
2021
).
56.
E.
Saitoh
, et al, “
Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
,”
Appl. Phys. Lett.
88
,
182509
(
2006
).
57.
H.
Jin
et al, “
Effect of the magnon dispersion on the longitudinal spin Seebeck effect in yttrium iron garnets
,”
Phys. Rev. B
92
,
054436
(
2015
).
58.
T. N.
Thi
et al, “
Morphology-dependent spin Seebeck effect in yttrium iron garnet thin films prepared by metal-organic decomposition
,”
Ceram. Int.
47
,
16770
16775
(
2021
).
59.
S.-K.
Li
et al, “
Enhanced spin Seebeck effect in monolayer tungsten diselenide due to strong spin current injection at interface
,”
Adv. Funct. Mater.
30
,
2003192
(
2020
).
60.
B.
Qin
et al, “
Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments
,”
Science
373
,
556
561
(
2021
).
61.
M.
Dargusch
et al, “
Thermoelectric generators: Alternative power supply for wearable electrocardiographic systems
,”
Adv. Sci.
7
,
2001362
(
2020
).
62.
L.
Li
et al, “
Multifunctional wearable thermoelectrics for personal thermal management
,”
Adv. Funct. Mater.
32
(
22
),
2200548
(
2022
).
63.
Z.-H.
Zheng
et al, “
Realizing high thermoelectric performance in highly (0l0)-textured flexible Cu2Se thin film for wearable energy harvesting
,”
Mater. Today Phys.
24
,
100659
(
2022
).
64.
Y.
Hou
et al, “
Whole fabric-assisted thermoelectric devices for wearable electronics
,”
Adv. Sci.
9
,
2103547
(
2021
).
65.
Z.-G.
Chen
et al, “
Thermoelectric coolers: Infinite potentials for finite localized microchip cooling
,”
J. Mater. Sci. Technol.
121
,
256
262
(
2022
).
66.
W.-Y.
Chen
et al, “
Thermoelectric coolers: Progress, challenges, and opportunities
,”
Small Methods
6
(
2
),
2101235
(
2022
).
67.
F. P.
Incropera
et al,
Fundamentals of Heat and Mass Transfer
,
6th ed.
(
John Wiley
Hobokan Nj
,
2007
).
68.
A. I.
Hochbaum
et al, “
Enhanced thermoelectric performance of rough Silicon nanowires
,”
Nature
451
,
163
165
(
2008
).
69.
N. W.
Ashkroft
and
N. D.
Mermin
,
Solid State Physics Holt
(
Rinehart and Winston
,
1976
).
70.
J. P.
Srivastva
,
Elements of Solid State Physics
(
PHI Learning Private Limited Delhi
,
2009
).
71.
C.
Kittel
,
Introduction to Solid State Physics 8 Aufl.
(
Wiley
,
New York
,
2005
).
72.
C.
Wood
, “
Materials for thermoelectric energy conversion
,”
Rep. Prog. Phys.
51
,
459
539
(
1988
).
73.
D.-W.
Ao
et al, “
Novel thermal diffusion temperature engineering leading to high thermoelectric performance in BiTe‐based flexible thin‐films
,”
Adv. Sci.
9
,
2103547
(
2022
).
74.
Y.
Lio
et al, “
Sintering pressure as a ‘scalpel’ to enhance the thermoelectric performance of MgAgSb
,”
J. Mater. Chem. C
10
,
3360
3367
(
2022
).
75.
Y. L.
Cao
et al, “
High near-room temperature figure of merit of n-type Bi2GeTe4 based thermoelectric materials via a stepwise optimization of carrier concentration
,”
Chem. Eng. J.
433
,
133775
(
2022
).
76.
B.
Jabar
et al, “
Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance
,”
Nat. Commun.
12
,
7192
(
2021
).
77.
T.
Cao
et al, “
Advances in conducting polymer-based thermoelectric materials and devices
,”
Microstructures
1
,
2021007
(
2021
).
78.
Y.
Wang
et al, “
Bi0.5Sb1.5Te3/PEDOT:PSS-based flexible thermoelectric film and device
,”
Chem. Eng. J.
397
,
125360
(
2020
).
79.
Z.-H.
Zheng
et al, “
Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films
,”
Nano Energy
81
,
105683
(
2020
).
80.
D.-Z.
Wang
et al, “
Simultaneously achieving high ZT and mechanical hardness in highly alloyed GeTe with symmetric nano domains
,”
Chem. Eng. J.
441
,
13631
(
2022
).
81.
L.-C.
Yin
et al, “
High carrier mobility and high figure of merit in the CuBiSe2 alloyed GeTe
,”
Adv. Energy Mater.
11
,
2102913
(
2021
).
82.
M.
Lim
et al, “
Optimizing electronic quality factor toward high-performance Ge1-x-yTaxSbyTe thermoelectric: The role of transition metal doping
,”
Adv. Mater.
33
,
2102575
(
2021
).
83.
X.-L.
Shi
et al, “
A solvothermal synthetic environmental design for high-performance SnSe-based thermoelectric materials
,”
Adv. Energy Mater.
12
,
2200670
(
2022
).
84.
C.
Zhou
et al, “
Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal
,”
Nat. Mater.
20
,
1378
(
2020
).
85.
J.-S.
Liang
et al, “
Synergistic effect of band and nanostructure engineering on the boosted thermoelectric performance of n-type Mg3+δ(Sb, Bi)2 Zintls
,”
Adv. Energy Mater.
12
,
2201086
(
2022
).
86.
L.
Yu
et al, “
Significantly enhanced thermoelectric figure of merit of n-type Mg3Sb2-based Zintl phase compounds via co-doped of Mg and Sb site
,”
Mater. Today Phys.
26
,
100721
(
2022
).
87.
K.
Zhao
et al, “
Recent advances in liquid-like thermoelectric materials
,”
Adv. Funct. Mater.
30
,
1903867
(
2020
).
88.
W.-D.
Liu
et al, “
Cu2Se thermoelectric: Property, methodology and device
,”
Nano Today
35
,
100938
(
2020
).
89.
A. A.
Olvera
, et al, “
Partial Indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se
,”
Energy Environ. Sci.
10
,
1668
1676
(
2017
).
90.
M.
Acharya
et al, “
High performance (ZT > 1) n-type oxide thermoelectric composites from earth abundant materials
,”
Nano Energy
84
,
105905
(
2021
).
91.
W.
Rahim
et al, “
Ca4Sb2O and Ca4Bi2O: Two promising mixed-anio thermoelectrics
,”
J. Mater. Chem. A
9
,
20417
20435
(
2021
).
92.
W.-D.
Liu
et al, “
Carbon allotrope hybrids advance thermoelectric development and applications
,”
Renewable Sustainable Energy Rev.
141
,
110800
(
2021
).
93.
L.
Xi
et al, “
Discovery of high-performance thermoelectric chalcogenides through reliable high throughput material screening
,”
J. Am. Chem. Soc.
140
,
10785
10793
(
2018
).
94.
J.-H.
Pohls
et al, “
Experimental validation on high thermoelectric performance in RECuZnP2 predicted by high throughput DFT calculations
,”
Mater. Horiz.
8
,
209
215
(
2021
).
95.
T.
Wang
et al, “
Cu3ErTe3: A new promising thermoelectric material predicted by high throughput screening
,”
Mater. Today Phys.
12
,
100180
(
2022
).
96.
N. F.
Mott
,
The Theory of Properties of Metals and Alloys
(
Dover Publications
,
New York
,
1958
).
97.
P.
Larson
et al, “
Electron structure and transport of Bi 2 Te 3 and BaBi Te 3
,”
Phys. Rev. B
61
,
8162
(
2000
).
98.
Y.
Pei
et al, “
Band engineering of thermoelectric materials
,”
Adv. Mater.
24
,
6125
(
2012
).
99.
R. P.
Chasmar
and
R.
Stratton
, “
The thermoelectric figure of merit and its relation to thermoelectric generators
,”
J. Electron. Control
7
,
52
(
1959
).
100.
S. K.
Kihoi
et al, “
Complementary effect of co-doping aliovalent elements Bi and Sb in self-compensated SnTe-based thermoelectric materials
,”
J. Mater. Chem. C
9
,
9922
9931
(
2021
).
101.
H. J.
Goldsmid
,
Thermoelectric Refrigeration
(
Plenum Press
,
New York
,
1964
).
102.
S.
Li
et al, “
Recent progress on high performance of Tin Chalcogenides thermoelectric materials
,”
J. Mater. Chem. A
6
,
2432
2448
(
2018
).
103.
L. M.
Rogers
, “
Valence band structure of SnTe
,”
J. Phys. D
1
,
845
(
1968
).
104.
A.
Crocker
and
L.
Rogers
, “
Valence band structure of PbTe
,”
J. Phys. Colloq.
29
(
C4
),
C4-129
C4-132
(
1968
).
105.
D. J.
Singh
and
I. I.
Mazin
, “
Calculated thermoelectric properties of La-filled skutterudites
,”
Phys. Rev. B
56
,
R1650
(
1997
).
106.
K.
Shirai
and
K.
Yamanaka
, “
Mechanism behind the high thermoelectric power factor of SrTi O 3 by calculating the transport coefficient
,”
J. Appl. Phys.
113
,
053705
(
2013
).
107.
G.
Wu
et al, “
Refined band structure plus enhanced phonon scattering realizes thermoelectric performance optimization in CuI–Mn codoped SnTe
,”
J. Mater. Chem. A
9
,
13065
13070
(
2021
).
108.
W. C.
Xu
et al, “
Substantial thermoelectric enhancement achieved by manipulating the band structure and dislocations in Ag and La co-doped SnTe
,”
J. Adv. Ceram.
10
,
860
870
(
2021
).
109.
M.
Aminzare
et al, “
Effect of single metal doping on the thermoelectric properties of SnTe
,”
Sustainable Energy Fuels
3
,
251
(
2019
).
110.
Y. P.
Wang
et al, “
Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion
,”
Rare Met.
40
,
2819
2828
(
2021
).
111.
Q.
Yang
et al, “
Realizing widespread resonance effects to enhance thermoelectric performance of SnTe
,”
J. Alloys Compd.
852
,
156989
(
2021
).
112.
G.
Tan
et al, “
Rationaly designing high-performance bulk thermoelectric materials
,”
Chem. Rev.
116
,
12123
(
2016
).
113.
K. H.
Lee
et al, “
Cumulative defect structures for experimentally-attainable low thermal conductivity in thermoelectric (Bi, Sb)2Te3 alloys
,”
Mater. Today Energy
21
,
100795
(
2021
).
114.
T. J.
Zhu
et al, “
Microstructure and electrical properties of quenched Ag Pb 18 Sb 1 x Te 20 thermoelectric materials
,”
J. Phys. D
40
,
5537
(
2007
).
115.
H. S.
Dow
et al, “
Thermoelectric properties of Ag Pb m S b Te 2 + m (12  m 26 ) at elevated temperature
,”
J. Appl. Phys.
105
,
113703
(
2009
).
116.
T. C.
Harman
et al, “
Nanostructured thermoelectric materials
,”
J. Electron. Mater.
34
(
5
),
L19
L22
(
2005
).
117.
G.
Chen
, “
Size and interface effects on thermal conductivity and superlattices and periodic thin film structures
,”
J. Heat Transfer
119
(
2
),
220
229
(
1997
).
118.
Y.
Liu
et al, “
Grain-size-dependent thermal conductivity of nanocrystalline materials
,”
J. Nanopart. Res.
18
,
296
(
2016
).
119.
R.
Hanus
et al, “
Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency
,”
Adv. Mater.
3
,
11900108
(
2019
).
120.
G.
Xie
et al, “
Band inversion induced multiple electronic valleys for high thermoelectric performance of SnTe with strong lattice softening
,”
Nano Energy
69
,
104395
(
2020
).
121.
S.
Acharya
et al, “
Soft phonon modes driven reduced thermal conductivity in self-compensated Sn 1.03 T e with Mn doping
,”
Appl. Phys. Lett.
109
,
133904
(
2016
).
122.
Z.
Chen
et al, “
Manipulation of phonon transport in thermoelectrics
,”
Adv. Mater.
30
,
1705617
(
2018
).
123.
J. S.
Dyck
et al, “
Thermoelectric properties of the n-type filled skutterudite Ba 0.3 Co 4 Sb 12 doped with Ni
,”
J. Appl. Phys.
91
(
6
),
3698
(
2002
).
124.
B. C.
Sales
et al, “
Filled skutterudite antimonides: A new class of thermoelectric materials
,”
Science
272
,
1325
1328
(
1996
).
125.
G. S.
Nolas
et al, “
High figure of merit in partially filled Yb Skutterudite materials
,”
Appl. Phys. Lett.
77
(
12
),
1855
1857
(
2000
).
126.
X.
Tang
et al, “
Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co rich Ce y Fe x Co 4 x Sb 12
,”
J. Mater. Res.
16
(
3
),
837
(
2001
).
127.
H.
Liu
et al, “
Copper-ion liquid like crystals
,”
Nat. Mater.
11
,
422
(
2012
).
128.
Y.-X.
Zhang
et al, “
Enhanced thermoelectric performance of Cu1.8S via lattice softening
,”
Chem. Eng. J.
428
,
131153
(
2022
).
129.
M. J.
Kruszewski
et al, “
High homogeneity and ultralow lattice thermal conductivity in Se/Te-doped skutterudites obtained by self-propagating high temperature synthesis and pulse plasma sintering
,”
J. Alloys Compd.
909
,
164796
(
2022
).
130.
J. Z.
Zhang
et al, “
In situ formed nano-pore induced by ultrasonication boosts the thermoelectric performance of Cu2Se compound
,”
J. Alloys Compd.
881
,
160639
(
2022
).
131.
G.
Tan
et al, “
Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe
,”
Energy Environ. Sci.
8
,
267
(
2015
).
132.
L.
Wang
et al, “
Manipulating band convergence and resonant state in thermoelectric material SnTe by Mn-In co-doping
,”
ACS Energy Lett.
2
,
1203
1207
(
2017
).
133.
X.
Tan
et al, “
Thermoelectric properties of In-Hg co-doping in SnTe: Energy band engineering
,”
J. Materiomics
4
(
1
),
62
67
(
2018
).
134.
Q.
Zhang
et al, “
High thermoelectric performance by resonant dopant Indium in nanostructured SnTe
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
3
),
13261
13266
(
2013
).
135.
Z.
Chen
et al, “
Mechanical alloying boosted SnTe thermoelectrics
,”
Mater. Today Phys.
17
,
100340
(
2021
).
136.
K.
Rani
et al, “
Improved thermoelectric performance of Se doped n-type nanostructured Bi2Te3,
J. Mater. Sci.
34
,
1074
(
2023
).
137.
K.
Rani
et al, “
Surfactant assisted solvothermal synthesis of Bi2Te3 nanostructure for thermoelectric applications
,”
Mater. Today
62
,
6432
(
2022
).
138.
R.
Moshwan
et al, “
High thermoelectric performance in sintered octahedron-shaped Sn(CdIn)xTe1 + 2x microcrystals
,”
ACS Appl. Mater. Interfaces
10
,
38944
38952
(
2018
).
139.
J.
Gainza
et al, “
Evidence of nanostructuring and reduced thermal conductivity in n-type Sb-alloyed SnSe thermoelectric polycrystals
,”
J. Appl. Phys.
126
,
045105
(
2019
).
140.
H.
Tan
et al, “
Synergistic effect of Bismuth and Indium co-doping for high Thermoelectric performance of melt spinning SnTe alloys
,”
ACS Appl. Mater. Interfaces
11
,
23337
23345
(
2019
).
141.
H.
Tan
et al, “
Rapid preparation of Ge0.9Sb0.1Te via unique melt spinning: Hierarchical microstructure and improved thermoelectric performance
,”
J. Alloys Compd.
774
,
129
136
(
2019
).
142.
B.
Yang
et al, “
Ultralow thermal conductivity and enhanced thermoelectric properties of SnTe based alloys prepared by melt spinning technique
,”
J. Alloys Compd.
837
,
155568
(
2020
).
143.
X.
Yan
et al, “
Melt-spun Sn1-x-ySbxMnyTe with unique multiscale microstructures approaching exceptional average thermoelectric ZT
,”
Nano Energy
84
,
105879
(
2021
).
144.
R.
Moshwan
et al, “
Enhancing thermoelectric properties of InTe nanoprecipitate-embedded Sn1-xInxTe microcrystals through anharmonicity and strain engineering
,”
ACS Appl. Energy Mater.
2
,
2965
2971
(
2019
).
145.
M.
Cattani
et al, “
Thermoelectric power in very thin thermocouples: Quantum size effect
,”
J. Appl. Phys.
100
,
114905
(
2006
).
146.
T.
Mao
et al, “
Size effects in thermoelectric materials
,”
npj Quantum Mater.
1
,
16028
(
2016
).
147.
D. I.
Bilc
et al, “
Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states
,”
Phys. Rev. Lett.
114
,
136601
(
2015
).
148.
M. S.
Dresselhaus
et al, “
New directions for low dimensional thermoelectric materials
,”
Adv. Mater.
19
,
1043
1053
(
2007
).
149.
R. F.
Bunshah
,
Handbook of Deposition Technologies for Films and Coatings
,
2nd ed.
(
William Andrew Publishing
,
1994
).
150.
D. M.
Mattox
,
The Foundations of Vacuum Coating Technology
(
William Andrew Publishing
,
2004
).
151.
K.
Seshan
,
Handbook of Thin Film Deposition
,
3rd ed.
(
William Andrew Publishing
,
2017
).
152.
D.
Dobkin
and
M. K.
Zuraw
,
Principles of Chemical Vapor Deposition
(
Springer
,
Netherlands
,
2003
).
153.
C. E.
Morosanu
,
Thin Films by Chemical Vapour Deposition
(
Elsevier
,
2016
).
154.
J. E.
Crowell
, “
Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies
,”
J. Vac. Sci. Technol. A
21
(
5
),
S88
S95
(
2003
).
155.
P. N.
Peranio
et al, “
Structural and thermoelectric properties of epitaxially grown Bi 2 Te 3 thin films and super lattices
,”
J. Appl. Phys.
100
,
114306
(
2006
).
156.
M.-Y.
Kim
et al, “
Preparation and characterization of Bi 2 Te 3 / Sb 2 Te 3 thermoelectric thin-film devices for power generation
,”
J. Electron. Mater.
43
(
6
),
1933
1939
(
2014
).
157.
J. S.
Dyck
et al, “
Micro thermoelectric cooler fabrication: Growth and characterization of patterned Sb 2 Te 3 and Bi 2 Te 3 films
,”
Proceedings ICT'03 22nd International Conference on Thermoelectrics
(IEEE,
2003
), pp.
665
668
.
158.
S. J.
Kim
et al, “
Improvement of thermoelectric properties of screen printed Bi 2 Te 3 thick film by optimization of the annealing process
,”
J. Alloys Compd.
552
,
107
110
(
2013
).
159.
S.
Shen
et al, “
Enhancing thermoelectric properties of Sb 2 Te 3 flexible thin film through microstructure control and crystal preferential orientation engineering
,”
Appl. Surf. Sci.
414
,
197
204
(
2017
).
160.
K. S.
Urmila
et al, “
Optoelectronic properties and Seebeck coefficient in SnSe thin films
,”
J. Semicond.
37
,
093002
(
2016
).
161.
G.
Jeyong
et al, “
Sn 1 x S e thin films with low thermal conductivity: Role of stoichiometry deviation in thermal transport
,”
J. Mater. Chem. C
6
,
10083
10084
(
2018
).
162.
H. S.
Heo
et al, “
Composition charge-driven texturing and doping in solution-processed SnSe thin films
,”
Nat. Commun.
10
,
864
(
2019
).
163.
S. H.
Liu
et al, “
Nanostructured SnSe: Synthesis, doping and thermoelectric properties
,”
J. Appl. Phys.
123
,
115109
(
2018
).
164.
R. F.
Brebrick
and
A. J.
Strauss
, “
Anomalous thermoelectric power as evidence for two-valence bands in SnTe
,”
Phys. Rev.
131
(
1
),
104
110
(
1963
).
165.
Z.
Li
et al, “
Synthesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method
,”
Nano Energy
28
,
78
86
(
2016
).
166.
D. K.
Bhat
and
U. S.
Shenoy
, “
Electronic structure engineering of Tin Telluride through co-doping of Bismuth and Indium for high performance thermoelectrics: A synergistic effect leading to record high room temperature ZT in Tin Telluride
,”
J. Mater. Chem. C
7
,
4817
4821
(
2019
).
167.
X.
Tan
et al, “
Optimizing the thermoelectric performance of In-Cd co-doped SnTe by introducing Sn vacancies
,”
J. Mater. Chem. C
5
,
7504
(
2017
).
168.
S.
Perumal
et al, “
High thermoelectric performance and enhanced mechanical stability of p-type Ge1-xSbxTe
,”
Chem. Mater.
27
(
20
),
7171
7178
(
2015
).
169.
L.
Zhao
et al, “
Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
,”
Nature
508
,
373
377
(
2014
).
170.
S.
Sassi
et al, “
Assessment of the thermoelectric performance of polycrystalline p-type SnSe
,”
Appl. Phys. Lett.
104
,
212105
(
2014
).
171.
X.
Shi
et al, “
Realizing high thermoelectric performance in n-type highly distorted Sb-doped SnSe microplates via tuning high electron concentration and inducing intensive crystal defects
,”
Adv. Energy Mater.
8
(
21
),
1800775
(
2018
).
172.
M.
Takashiri
et al, “
Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony thin films
,”
Thin Solid films
519
,
619
624
(
2010
).
173.
X.
Wang
et al, “
Effects of annealing temperature on thermoelectric properties of Bi 2 Te 3 films prepared by co-sputtering
,”
Appl. Surf. Sci.
276
,
539
542
(
2013
).
174.
S.
Singh
et al, “
Effects of annealing on the thermoelectric properties of nanocrystalline Bi 1.2 Sb 0.8 Te 3 thin films prepared by thermal evaporation
,”
Appl. Phys. A
125
(
2
),
144
(
2019
).
175.
Z.
Zhang
et al, “
The effect of 00 l crystal plane orientation on the thermoelectric properties of Bi 2 Te 3 thin film
,”
Solid State Commun.
151
,
1520
1523
(
2011
).
176.
M.
Takashiri
et al, “
Strain and grain size effects on thermal transport in highly-oriented nanocrystalline bismuth antimony telluride thin films
,”
Int. J. Heat Mass Transfer
76
,
376
384
(
2014
).
177.
S.
Hou
et al, “
Surprisingly high in-plane thermoelectric performance in a-axis-oriented epitaxial SnSe thin films
,”
Mater. Today Phys.
18
,
100399
(
2021
).
178.
J.
Heremans
and
C. M.
Thrush
, “
Thermoelectric power of Bismuth nano-wires
,”
Phys. Rev. B
59
(
19
),
12579
12583
(
1999
).
179.
J.
Kim
et al, “
Bismuth nanowire thermoelectric
,”
J. Mater. Chem. C
3
,
11999
12013
(
2015
).
180.
C. X.
Quintela
et al, “
Epitaxial CrN thin films with high thermoelectric figure of merit
,”
Adv. Mater.
27
(
19
),
3032
3037
(
2015
).
181.
S.
Huang
et al, “
Significant enhancement in thermoelectric performance of Mg 3 Sb 2 from bulk to two-dimensional mono layer
,”
Nano Energy
62
,
212
219
(
2019
).
182.
P.
Vaqeiro
and
A. V.
Powell
, “
Recent developments in nanostructured materials for high performance thermoelectric
,”
J. Mater. Chem.
20
(
43
),
9577
9584
(
2010
).
183.
K. F.
Hsu
et al, “
Cubic Ag Pb m S b Te 2 + m: Bulk thermoelectric materials withhigh figure of merit
,”
Science
303
,
818
(
2004
).
184.
E.
Quarez
et al, “
Nanostructuring, compositional fluctuation, and atomic ordering in the thermoelectric materials Ag Pb m S b Te 2 + m. The Myth of solid Solutions
,”
J. Am. Chem. Soc.
127
,
9177
9190
(
2005
).
185.
J. D.
Verhoeven
,
Fundamentals of Physical Metallurgy
(
Wiley
,
New York
,
1975
).
186.
B. J.
He
et al, “
Microstructure-lattice thermal conductivity correlation in nonostructured Pb Te 0.7 S 0.3 thermoelectric materials
,”
Adv. Funct. Mater.
20
,
764
772
(
2010
).
187.
J. C.
Caylor
et al, “
Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity
,”
Appl. Phys. Lett.
87
,
023105
(
2005
).
188.
J. R.
Sootsman
et al, “
Microstructure and thermoelectric properties of mechanically robust PbTe-Si eutectic composites
,”
Chem. Mater.
22
,
869
875
(
2010
).
189.
J. R.
Sootsman
et al, “
Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation
,”
Chem. Mater.
18
,
4993
4995
(
2006
).
190.
K.
Ahn
et al, “
Exploring resonance levels and nanostructuring in PbTe-CdTe and enhancement of the thermoelectric figure of merit
,”
J. Am. Chem. Soc.
132
,
5227
5235
(
2010
).
191.
S. N.
Girard
et al, “
In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity
,”
Nano Lett.
10
,
2825
2831
(
2010
).
192.
S. H.
Yang
et al, “
Nanostructures in high performance ( GeTe ) x ( AgSb Te 2 ) 100 x thermoelectric materials
,”
Nanotechnology
19
,
245707
(
2008
).
193.
G.
Tan
et al, “
High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach
,”
J. Am. Chem. Soc.
136
,
7006
7017
(
2014
).
194.
R. F.
Brebrick
et al, “
Deviations from stoichiometry and electrical properties in SnTe
,”
J. Phys. Chem. Solids
24
(
1
),
27
36
(
1963
).
195.
E. I.
Rogachewa
et al, “
Effect of deviation from stoichiometry on thermoelectric properties of Bi 2 Te 3 polycrystals and thin films in the temperature range 70–300 K
,”
J. Nano Electron. Phys.
11
(
5
),
05027
(
2019
).
196.
I. T.
Witting
et al, “
The thermoelectric properties of Bismuth Telluride
,”
Adv. Electron. Mater.
5
,
1800904
(
2019
).
197.
D. M.
Rowe
,
Thermoelectrics Handbook Macro to Nano
(
CRC PressTaylor & Francis
,
2005
), Chap.
27
.
198.
S.
Li
et al, “
Enhanced thermoelectric performance of orientated and defected SnTe
,”
J. Alloys Compd.
858
,
157634
(
2021
).
199.
S.
Nag
et al, “
Influence of vacancy defects on the thermoelectric performance of SnSe sheet
,”
Physica E
134
,
114814
(
2021
).
200.
L.
Su
et al, “
Realizing high doping efficiency and thermoelectric performance in n-type SnSe polycrystals via bandgap engineering and vacancy compensation
,”
Mater. Today Phys.
20
,
100452
(
2021
).
201.
H.
Pang
et al, “
Realizing N-type SnTe thermoelectrics with competitive performance through suppressing Sn vacancies
,”
J. Am. Chem. Soc.
143
,
8538
8542
(
2021
).
202.
J. P.
Heremans
et al, “
Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states
,”
Science
321
,
554
557
(
2018
).
203.
Q.
Zhang
et al, “
Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide
,”
Energy Environ. Sci.
5
(
1
),
5246
(
2012
).
204.
X.
Tan
et al, “
Band engineering and improved thermoelectric performance in M-doped SnTe (M=Mg, Mn, Cd and Hg)
,”
Phys. Chem. Chem. Phys.
18
,
7141
7147
(
2016
).
205.
F.
Guo
et al, “
Thermoelectric SnTe with band convergence, dense dislocations, and interstitials through Sn self‐compensation and Mn alloying
,”
Small
14
(
37
),
1802615
(
2018
).
206.
Z.
Chen
et al, “
Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
,”
Chin. Phys. B
27
,
047202
(
2018
).
207.
D. K.
Bhat
and
U. S.
Shenoy
, “
Zn: A versatile resonant dopant for SnTe thermoelectrics
,”
Mater. Today Phys.
11
,
100158
(
2019
).
208.
S.
Acharya
et al, “
Enhanced thermoelectric properties of Yb doped SnTe
,”
AIP Conf. Proc.
1832
,
110028
(
2017
).
209.
A.
Hmood
et al, “
Yb-doped SnTe semimetal thin films deposited by thermal evaporation: Structural, electrical, and thermoelectric properties
,”
Superlattices Microstruct.
76
,
36
45
(
2014
).
210.
S.
Mandava
et al, “
A synergistic approach to achieving the high thermoelectric performance of La-doped SnTe using resonance state and partial band convergence
,”
Mater. Adv.
2
,
4352
4361
(
2021
).
211.
R.
Pathak
et al, “
Enhanced band convergence and ultra-low thermal conductivity synergistically lead to high thermoelectric performance in SnTe
,”
Angew. Chem., Int. Ed.
60
,
17686
(
2021
).
212.
W.
Xu
et al, “
Optimized electronic bands and ultralow lattice thermal conductivity in Ag and Y doped SnTe
,”
ACS Appl. Mater. Interfaces
13
,
32876
32885
(
2021
).
213.
Z.
Ma
et al, “
Ultra-high thermoelectric performance in SnTe by the integration of several optimization strategies
,”
Mater. Today Phys.
17
,
100350
(
2021
).
214.
Q.
Zhang
et al, “
Improvement of thermoelectric properties of SnTe by Mn-Bi codoping
,”
Chem. Eng. J.
42
(
2
),
127795
(
2021
).
215.
T.
Hussain
et al, “
Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te
,”
Nano Energy
73
,
104832
(
2020
).
216.
L. J.
Zhang
et al, “
Ehnanced thermoelectric performance through synergy of resonance levels and valence band convergence via Q/In (Q = Mg, Ag, Bi) co-doping
,”
J. Mater. Chem. A
6
,
2507
2516
(
2017
).
217.
Z.
Zhou
et al, “
Multiple effect of Bi doping to enhanced thermoelectric properties of SnTe
,”
J. Mater. Chem. A
4
,
13171
13175
(
2016
).
218.
A.
Banik
et al, “
Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe
,”
Energy Environ. Sci.
12
,
589
(
2019
).
219.
L.
Zhao
et al, “
High thermoelectric performance of Ag doped polycrystalline SnTe bulk via synergistic manipulation of electrical and thermal transport
,”
Phys. Chem. Chem. Phys.
21
,
17978
17984
(
2019
).
220.
R.
Qrabi
et al, “
Band degeneracy, low thermal conductivity and high thermoelectric figure of merit in SnTe-CaTe alloys
,”
Chem. Mater.
28
(
1
),
376
384
(
2015
).
221.
Y.
Pei
et al, “
Interstitial point defect scattering contributing to high thermoelectric performance in SnTe
,”
Adv. Electron. Mater.
2
,
1600019
(
2016
).
222.
A.
Banik
et al, “
The origin of low thermal conductivity in Sn 1 x Sb x T e: phonon scattering via layered intergrowth nanostructures
,”
Energy Environ. Sci.
9
,
2011
2019
(
2016
).
223.
N.
Narendra
et al, “
Doping induced enhanced density of states in Bismuth Telluride
,”
Appl. Phys. Lett.
111
,
232101
(
2017
).
224.
R.
Qrabi
et al, “
Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials
,”
Chem. Mater.
29
(
2
),
612
620
(
2016
).
225.
A.
Banik
et al, “
Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties
,”
Chem. Mater.
27
(
2
),
581
587
(
2015
).
226.
X.
Dong
et al, “
Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe
,”
J. Mater. Sci. Technol.
86
,
204
209
(
2021
).
227.
D. K.
Bhat
and
U. S.
Shenoy
, “
High thermoelectric properties of co-doped Tin Telluride due to synergistic effect of Magnesium and Indium
,”
J. Phys. Chem. C
121
(
13
),
7123
7130
(
2017
).
228.
T.
Wang
et al, “
Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit
,”
J. Mater. Sci.
54
,
9049
9062
(
2019
).
229.
D. K.
Bhat
and
U. S.
Shenoy
, “
Bi and Zn co-doped SnTe thermoelectrics: Interplay of resonance levels and heavy hole band dominance leading to enhanced performance and record high room temperature ZT
,”
J. Mater. Chem. C
8
,
2036
2042
(
2020
).
230.
J. Q.
Li
et al, “
Phase and thermoelectric properties of SnTe with (Ge, Mn) co-doping
,”
Phys. Chem. Chem. Phys.
19
,
28749
28755
(
2017
).
231.
D. K.
Bhat
and
U. S.
Shenoy
, “
Enhanced thermoelectric performance of bulk tin telluride: Synergistic effect of calcium and indium co-doping
,”
Mater. Today Phys.
4
,
12
18
(
2018
).
232.
R.
Moshwan
et al, “
Outstanding thermoelectric properties in solvothermal-synthesized Sn1-3x InxAg2x micro-crystals through defect engineering and band tuning
,”
J. Mater. Chem. A
8
,
3978
3987
(
2020
).
233.
L.
Wang
et al, “
Thermoelectric performance of Se/Cd co-doped SnTe via microwave solvothermal method
,”
ACS Appl. Mater. Interfaces
9
,
22612
–−
22619
(
2017
).
234.
D.
Sarkar
et al, “
Highly converged valence bands and ultralow lattice thermal conductivity for high -performance SnTe Thermoelectrics
,”
Angew. Chem.
132
,
11208
11215
(
2020
).
235.
F.
Guo
et al, “
Enhanced thermoelectric performance of SnTe alloy with Ce and Li co-doping
,”
Mater. Today Phys.
11
,
10056
(
2019
).
236.
Z.
Ma
et al, “
Enhancement of thermoelectric properties in Pd−In co-doped SnTe and its phase transition behavior
,”
ACS Appl. Mater. Interfaces
11
,
33792
33802
(
2019
).
237.
H.
Wang
et al, “
Optimization of peak and average figures of merits for In & Se co-doped SnTe alloys
,”
Inorg. Chem. Front.
5
,
793
801
(
2013
).
238.
R.
Moshwan
et al, “
Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering
,”
Nano Energy
65
,
104056
(
2019
).
239.
W.
Lu
et al, “
Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level via a green and facile hydrothermal method
,”
Nanoscale
12
,
5857
5865
(
2020
).
240.
L.
Huang
et al, “
Tuning the carrier scattering mechanism to improve the thermoelectric performance of p-type Mg3Sb1.5Bi0.5 based materials by Ge doping
,”
Mater. Today Energy
25
,
100977
(
2022
).
241.
H.-T.
Liu
et al, “
Enhanced thermoelectric performance of n-type Nb-doped PbTe by corresponding resonant levels and inducing atomic disorder
,”
Mater. Today Phys.
24
,
100677
(
2022
).
242.
Q.
Zhang
et al, “
Enhanced thermoelectric performance of Hafnium free n-type ZrNiSn half Heusler alloys by isoelectronic Si substitution
,”
Mater. Today Phys.
24
,
100648
(
2022
).
243.
S.
Chen
et al, “
The role of Ge vacancies and Sb doping in GeTe: A comparative study of thermoelectric study of thermoelectric transport properties in SbxGe1-1.5xTe and SbxGe1-xTe compounds
,”
Mater. Today Phys.
24
,
100682
(
2022
).
244.
Anita
and
V.
Gupta
, “
Improvement in structural properties of SnTe by Co doping for thermoelectric applications
,”
Mater. Today
46
,
5857
5860
(
2021
).
245.
V.
Gupta
, “
Defect engineering in Te rich SnTe for thermoelectric applications
,”
Mater. Today
54
,
637
641
(
2022
).
246.
Kavita
et al, “
Structural and morphological properties of nanostructured Bi2Te3 with Mn-doping for thermoelectric applications
,”
Mater. Today
54
,
820
826
(
2022
).
247.
Anita
and
V.
Gupta
, “
Structural and morphological studies of Se doped SnTe thermoelectric materials
,”
Mater. Today
Proc. 62,
6420
6424
(
2022
).
248.
A.
Bhogra
et al, “
Enhancement of thermoelectric properties of Ti O 2 / SrTi O 3 bilayer after Ar ion irradiation
,”
AIP Conf. Proc.
2115
,
030600
(
2019
).
249.
M.
Bala
et al, “
Enhancement of thermoelectric power of PbTe thin films by Ag ion implantation
,”
J. Appl. Phys.
121
,
215301
(
2017
).
250.
A.
Bhogra
et al, “
Tuning electrical and thermoelectric properties of N Ion implanted SrTi O 3 thin films and their conduction mechanisms
,”
Nature
9
,
14486
(
2019
).
251.
M.
Tan
et al, “
Enhancement of thermoelectric properties induced by oriented nanolayer in Bi 2 Te 2.7 Se 0.3 columnar films
,”
Mater. Chem. Phys.
146
,
153
158
(
2014
).
252.
W.
Zhu
et al, “
Preferential growth transformation of Bi 0.5 Sb 1.5 Te 3 films induced by facile post-annealing process: Enhanced performance with layered structure
,”
Thin Solid films
556
,
270
276
(
2014
).
253.
H.
Bottner
et al, “
Aspects of thin-film superlattice thermoelectric materials, devices, and applications
,”
MRS Bull.
31
,
211
217
(
2006
).
254.
A.
Lambrecht
et al, “
High figure of merit ZT in PbTe and Bi2Te3/sub2/Te/sub3/based superlattice structures by thermal conductivity reduction
,” in
Proceedings International Conference on Thermoelectrics (ICT2001)
(IEEE,
2001
), pp.
335
339
.
255.
M. L.
Lee
and
R.
Venktasubramanian
, “
Effect of nanodot areal density and period on thermal conductivity in SiGe/Si nanodot superlattices
,”
Appl. Phys. Lett.
92
,
053112
(
2008
).
256.
T. C.
Harman
et al, “
Thermoelectric quantum-dot superlattices with high ZT
,”
J. Electron. Mater.
29
(
1
),
L1
L2
(
2000
).
257.
H.
Beyer
et al, “
PbTe based superlattice structures with high efficiency
,”
Appl. Phys. Lett.
80
,
1216
(
2002
).
258.
T. C.
Harman
et al, “
PbTe/Te superlattice structures with enhanced thermoelectric figure of merit
,”
J. Electron. Mater.
28
(
1
),
L1
L5
(
1999
).
You do not currently have access to this content.