The marine environment is experiencing significant impacts due to increased shipping traffic. The maritime industry must develop a low-carbon shipping strategy to comply with the increasingly strict emission regulations. This paper comprehensively reviews various decarbonization technologies, including navigation systems, hull design configuration, propulsion and power systems, and alternative fuels. By comparing a wide range of technologies in terms of their emission reduction potential and economic feasibility, this paper is intended to provide a full picture of alternative methods for future green shipping. Alternative fuels and hybrid power systems are found to have high potential for reducing carbon emissions and enhancing sustainability. The type of ship, its design configurations, and operation parameters affect the performance of optimal weather routing systems. With the current maritime policy and technological development, the transition from traditional marine fuel to liquefied natural gas can act as a temporary solution and provide significant decarbonization for maritime transportation. The emission reduction potential can be further enhanced with alternative fuels combined with hybrid power systems with high control flexibility.

1.
IMO
,
Fourth Greenhouse Gas Study
(
IMO
,
2020
).
2.
S.
Gössling
,
C.
Meyer-Habighorst
, and
A.
Humpe
, “
A global review of marine air pollution policies, their scope and effectiveness
,”
Ocean Coastal Manage.
212
,
105824
(
2021
).
3.
EMSA, “
The 2020 world merchant fleet statistics from equasis
,” in
EMSA European Maritime Safety Agency
,
2020
.
4.
United Nations
,
The Paris Agreement
(
United Nations
,
2015
).
5.
T. R.
Walker
,
O.
Adebambo
,
M. C.
Del Aguila Feijoo
,
E.
Elhaimer
,
T.
Hossain
,
S. J.
Edwards
,
C. E.
Morrison
,
J.
Romo
,
N.
Sharma
,
S.
Taylor
, and
S.
Zomorodi
,
World Seas: An Environmental Evaluation
(
Elsevier
,
2019
), pp.
505
530
.
6.
L.
Čampara
,
N.
Hasanspahić
, and
S.
Vujičić
, “
Overview of MARPOL ANNEX VI regulations for prevention of air pollution from marine diesel engines
,”
SHS Web Conf.
58
,
01004
(
2018
).
7.
P.
Balcombe
,
J.
Brierley
,
C.
Lewis
,
L.
Skatvedt
,
J.
Speirs
,
A.
Hawkes
, and
I.
Staffell
, “
How to decarbonise international shipping: Options for fuels, technologies and policies
,”
Energy Convers. Manage.
182
,
72
88
(
2019
).
8.
M.
Polakis
,
P.
Zachariadis
, and
J. O.
de Kat
, in
Sustainable Shipping: A Cross-Disciplinary View
(
Springer International Publishing
,
Cham
,
2019
), pp.
93
115
.
9.
N. K.
Im
,
B.
Choe
, and
C. H.
Park
, “
Developing and applying a ship operation energy efficiency evaluation index using SEEMP: A case study of South Korea
,”
J. Mar. Sci. Appl.
18
(
2
),
185
194
(
2019
).
10.
IMO
,
Adoption of the Initial Imo Strategy on Reduction of GHG Emissions
(
IMO
,
2018
).
11.
T.
Notteboom
,
A.
Pallis
, and
J.-P.
Rodrigue
,
Port Economics, Management and Policy
(
Routledge
,
London
,
2021
).
12.
J.
Faber
,
T.
Huigen
, and
D.
Nelissen
,
Regulating Speed: A Short-Term Measure to Reduce Maritime GHG Emissions
(CE Delft,
2017
).
13.
B.
Comer
,
C.
Chen
, and
D.
Rutherford
,
Relating Short-Term Measures to IMO'S Minimum 2050 Emissions Reduction Target
(International Council on Clean Transportation,
2018
).
14.
N. R.
Ammar
, “
Energy- and cost-efficiency analysis of greenhouse gas emission reduction using slow steaming of ships: Case study RO-RO cargo vessel
,”
Ships Offshore Struct.
13
(
8
),
868
876
(
2018
).
15.
P.
Cariou
, “
Is slow steaming a sustainable means of reducing CO2 emissions from container shipping?
,”
Transp. Res. Part D
16
(
3
),
260
264
(
2011
).
16.
M.
Christiansen
,
K.
Fagerholt
,
B.
Nygreen
, and
D.
Ronen
, in
Handbooks in Operations Research and Management Science
(
Elsevier
,
2007
), pp.
189
284
.
17.
V. N.
Armstrong
, “
Vessel optimisation for low carbon shipping
,”
Ocean Eng.
73
,
195
207
(
2013
).
18.
H.
Lindstad
and
G. S.
Eskeland
, “
Low carbon maritime transport: How speed, size and slenderness amounts to substantial capital energy substitution
,”
Transp. Res. Part D
41
,
244
256
(
2015
).
19.
E. A.
Bouman
,
E.
Lindstad
,
A. I.
Rialland
, and
A. H.
Strømman
, “
State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review
,”
Transp. Res. Part D
52
,
408
421
(
2017
).
20.
Y.
Yuan
,
J.
Wang
,
X.
Yan
,
B.
Shen
, and
T.
Long
, “
A review of multi-energy hybrid power system for ships
,”
Renewable Sustainable Energy Rev.
132
,
110081
(
2020
).
21.
O. B.
Inal
,
J.-F.
Charpentier
, and
C.
Deniz
, “
Hybrid power and propulsion systems for ships: Current status and future challenges
,”
Renewable Sustainable Energy Rev.
156
,
111965
(
2022
).
22.
H.
Lee
,
J.
Choi
,
I.
Jung
,
S.
Lee
,
S.
Yoon
,
B.
Ryu
, and
H.
Kang
, “
Effect of parameters on vapor generation in ship-to-ship liquefied natural gas bunkering
,”
Appl. Sci.
10
(
19
),
6861
(
2020
).
23.
Z.
Jia
,
IOP Conf. Ser.
647,
012178
(
2021
).
24.
P.
Gilbert
,
A.
Bows-Larkin
,
S.
Mander
, and
C.
Walsh
, “
Technologies for the high seas: Meeting the climate challenge
,”
Carbon Manage.
5
(
4
),
447
461
(
2014
).
25.
J.
Prpić-Oršić
,
R.
Vettor
,
O. M.
Faltinsen
, and
C.
Guedes Soares
, “
The influence of route choice and operating conditions on fuel consumption and CO2 emission of ships
,”
J. Mar. Sci. Technol.
21
(
3
),
434
457
(
2016
).
26.
E.
Işıklı
,
N.
Aydın
,
L.
Bilgili
, and
A.
Toprak
, “
Estimating fuel consumption in maritime transport
,”
J. Cleaner Prod.
275
,
124142
(
2020
).
27.
M. H.
Simonsen
,
E.
Larsson
,
W.
Mao
, and
J. W.
Ringsberg
, in
ASME 34th International Conference on Ocean, Offshore and Arctic Engineering
(
American Society of Mechanical Engineers
,
2015
).
28.
M.
Ichsan
,
M. F.
Pradana
, and
B.
Noche
, “
Estimation and optimization of the voyage energy efficiency operational indicator (EEOI) on Indonesian sea tollway corridors
,”
IOP Conf. Ser.
673
,
012024
(
2019
).
29.
S.
Fang
and
Y.
Xu
, “
Multi-objective robust energy management for all-electric shipboard microgrid under uncertain wind and wave
,”
Int. J. Electr. Power Energy Syst.
117
,
105600
(
2020
).
30.
P.
Kowalak
, “
Auxiliary machinery influence on vessel in slow steaming condition
,”
Proc. Inst. Mech. Eng., Part M
233
(
3
),
978
988
(
2019
).
31.
R.
Lu
,
O.
Turan
, and
E.
Boulougouris
, paper presented at the 3rd International Conference on Technologies, Operations, Logistics and Modelling for Low Carbon Shipping, London, UK, 9-10 September 2013.
32.
M.-C.
Fang
and
Y.-H.
Lin
, “
The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements (II): Optimized routings
,”
Appl. Ocean Res.
50
,
130
140
(
2015
).
33.
J.
Zheng
,
H.
Zhang
,
L.
Yin
,
Y.
Liang
,
B.
Wang
,
Z.
Li
,
X.
Song
, and
Y.
Zhang
, “
A voyage with minimal fuel consumption for cruise ships
,”
J. Cleaner Prod.
215
,
144
153
(
2019
).
34.
R.
Yan
,
S.
Wang
, and
Y.
Du
, “
Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship
,”
Transp. Res., Part E
138
,
101930
(
2020
).
35.
X.
Li
,
B.
Sun
,
C.
Guo
,
W.
Du
, and
Y.
Li
, “
Speed optimization of a container ship on a given route considering voluntary speed loss and emissions
,”
Appl. Ocean Res.
94
,
101995
(
2020
).
36.
J.
Holtrop
and
G. G. J.
Mennen
, “
An approximate power prediction method
,”
Int. Shipbuild. Prog.
29
,
166
170
(
1982
).
37.
C.-C.
Hsiung
and
D.
Shenyan
, “
Optimal ship forms for minimum total resistance
,”
J. Ship Res.
28
(
03
),
163
172
(
1984
).
38.
Bowden-Davison
, in
ITTC—Recommended Procedures
(
Bowden-Davison
,
1999
), pp.
266
273
.
39.
J. E.
Gutiérrez-Romero
and
J.
Esteve-Pérez
, “
Assessment of the influence of added resistance on ship pollutant emissions and freight throughput using high-fidelity numerical tools
,”
J. Mar. Sci. Eng.
10
(
1
),
88
(
2022
).
40.
M.
Ryabkova
,
V.
Karaev
,
J.
Guo
, and
Y.
Titchenko
, “
A review of wave spectrum models as applied to the problem of radar probing of the sea surface
,”
J. Geophys. Res.
124
(
10
),
7104
7134
, https://doi.org/10.1029/2018JC014804 (
2019
).
41.
J. G.
Rueda-Bayona
,
A.
Guzmán
, and
R.
Silva
, “
Genetic algorithms to determine JONSWAP spectra parameters
,”
Ocean Dyn.
70
(
4
),
561
571
(
2020
).
42.
N.
Salvesen
, “
Added resistance of ships in waves
,”
J. Hydronaut.
12
(
1
),
24
34
(
1978
).
43.
F.
Coslovich
,
M.
Kjellberg
,
M.
Östberg
, and
C.-E.
Janson
, “
Added resistance, heave and pitch for the KVLCC2 tanker using a fully nonlinear unsteady potential flow boundary element method
,”
Ocean Eng.
229
,
108935
(
2021
).
44.
M.
Amini-Afshar
and
H. B.
Bingham
, “
Added resistance using Salvesen–Tuck–Faltinsen strip theory and the Kochin function
,”
Appl. Ocean Res.
106
,
102481
(
2021
).
45.
J. A.
Garcia
,
J. L.
Casado
,
I. M.
Marco
,
A.
Manzao
,
A. M.
Manzao
,
C. M.
Fernández-Peruchena
, and
M.
Gastón
, “
Deterministic and probabilistic weather forecasting
,” AEMET Technical Report, Agencia Estatal de Meterologia,
2016
.
46.
M.
Życzkowski
,
J.
Szłapczyńska
, and
R.
Szłapczyński
, “
Review of weather forecast services for ship routing purposes
,”
Polish Maritime Res.
26
(
4
),
80
89
(
2020
).
47.
V. I.
Gershanik
, “
Weather routing optimisation–challenges and rewards
,”
J. Mar. Eng. Technol.
10
(
3
),
29
40
(
2011
).
48.
J.
Szlapczynska
and
R.
Smierzchalski
, “
Adopted isochrone method improving ship safety in weather routing with evolutionary approach
,”
Int. J. Reliab., Qual. Safety Eng.
14
,
635
645
(
2007
).
49.
C. P.
Padhy
,
D.
Sen
, and
P. K.
Bhaskaran
, in
Natural Hazards
(
Springer
,
2008
), pp.
373
385
.
50.
L.
Walther
,
A.
Rizvanolli
,
M.
Wendebourg
, and
C.
Jahn
, “
Modeling and optimization algorithms in ship weather routing
,”
Int. J. e-Navig. Marit. Econ.
4
,
31
45
(
2016
).
51.
R.
Vettor
and
C.
Guedes Soares
, “
Development of a ship weather routing system
,”
Ocean Eng.
123
,
1
14
(
2016
).
52.
R.
Vettor
,
J.
Szlapczynska
,
R.
Szlapczynski
,
W.
Tycholiz
, and
C. G.
Soares
, “
Towards improving optimised ship weather routing
,”
Pol. Marit. Res.
27
(
1
),
60
69
(
2020
).
53.
Y. P.
Aneja
,
V.
Aggarwal
, and
K. P. K.
Nair
, “
Shortest chain subject to side constraints
,”
Networks
13
(
2
),
295
302
(
1983
).
54.
Y.-H.
Lin
and
M.-C.
Fang
, in
ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering
(
American Society of Mechanical Engineers
,
2013
).
55.
H.
Wang
,
W.
Mao
, and
L.
Eriksson
, in
ASME 36th International Conference on Ocean, Offshore and Arctic Engineering
(
American Society of Mechanical Engineers
,
2017
), p.
V07BT06A023
.
56.
K.
Takashima
,
B.
Mezaoui
, and
R.
Shoji
,
Marine Navigation and Safety of Sea Transportation
(
CRC Press
,
2009
), pp.
431
436
.
57.
S.
Kuhlemann
and
K.
Tierney
, “
A genetic algorithm for finding realistic sea routes considering the weather
,”
J. Heuristics
26
(
6
),
801
825
(
2020
).
58.
H.
Wang
,
X.
Lang
, and
W.
Mao
, “
Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction
,”
Transp. Res., Part D
90
,
102670
(
2021
).
59.
P.
Serra
and
G.
Fancello
, “
Towards the IMO's GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping
,”
Sustainability
12
(
8
),
3220
(
2020
).
60.
H.
Schwartz
,
M.
Gustafsson
, and
J.
Spohr
, “
Emission abatement in shipping – is it possible to reduce carbon dioxide emissions profitably?
,”
J. Cleaner Prod.
254
,
120069
(
2020
).
61.
H.
Xing
,
S.
Spence
, and
H.
Chen
, “
A comprehensive review on countermeasures for CO2 emissions from ships
,”
Renewable Sustainable Energy Rev.
134
,
110222
(
2020
).
62.
A.
Farkas
,
N.
Degiuli
,
I.
Martić
, and
M.
Vujanović
, “
Greenhouse gas emissions reduction potential by using antifouling coatings in a maritime transport industry
,”
J. Cleaner Prod.
295
,
126428
(
2021
).
63.
H.
Lindstad
,
E.
Jullumstrø
, and
I.
Sandaas
, “
Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion
,”
Energy Policy
59
,
341
349
(
2013
).
64.
S. M. R.
Hasan
and
M. M.
Karim
, “
Proposed inland oil tanker design in Bangladesh focusing CO2 emission reduction based on revised EEDI parameters
,”
J. Mar. Sci. Eng.
8
(
9
),
658
(
2020
).
65.
H.
Lindstad
,
I.
Sandaas
, and
S.
Steen
, “
Assessment of profit, cost, and emissions for slender bulk vessel designs
,”
Transp. Res., Part D
29
,
32
39
(
2014
).
66.
I.
Stenius
,
A.
Rosén
, and
J.
Kuttenkeuler
, “
On structural design of energy efficient small high-speed craft
,”
Mar. Struct.
24
(
1
),
43
59
(
2011
).
67.
T.
Hertzberg
,
LASS, Lightweight Construction Applications at Sea
(SP Technical Research Institute of Sweden,
2009
).
68.
V.
Crupi
,
G.
Epasto
, and
E.
Guglielmino
, “
Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam
,”
Mar. Struct.
30
,
74
96
(
2013
).
69.
G.
Palomba
,
G.
Epasto
,
L.
Sutherland
, and
V.
Crupi
, “
Aluminium honeycomb sandwich as a design alternative for lightweight marine structures
,”
Ships Offshore Struct.
17
,
2355
2366
(
2021
).
70.
G.
Palomba
,
G.
Epasto
, and
V.
Crupi
, “
Lightweight sandwich structures for marine applications: A review
,”
Mech. Adv. Mater. Struct.
29
(
26
),
4839
4864
(
2022
).
71.
B.
Jia
,
K.
Fagerholt
,
L. B.
Reinhardt
, and
N. G. M.
Rytter
, in
Lecture Notes in Computer Science
, Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics (Springer,
2020
), pp.
84
100
.
72.
K. T.
Lu
,
H. K.
Lui
,
C. T. A.
Chen
,
L. L.
Liu
,
L.
Yang
,
C.
Di Dong
, and
C. W.
Chen
, “
Using onboard-produced drinking water to achieve ballast-free management
,”
Sustainability
13
(
14
),
7648
(
2021
).
73.
T. K.
Le
,
N.
Van He
,
N.
Van Hien
, and
N. T.
Bui
, “
Effects of a bulbous bow shape on added resistance acting on the hull of a ship in regular head wave
,”
J. Mar. Sci. Eng.
9
(
6
),
559
(
2021
).
74.
D.
Chrismianto
and
D. J.
Kim
, “
Parametric bulbous bow design using the cubic Bezier curve and curve-plane intersection method for the minimization of ship resistance in CFD
,”
J. Mar. Sci. Technol.
19
(
4
),
479
492
(
2014
).
75.
M. H.
Daniels
,
K. A.
Lundquist
,
J. D.
Mirocha
,
D. J.
Wiersema
, and
F. K.
Chow
, “
A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) model
,”
Mon. Weather Rev.
144
(
10
),
3725
3747
(
2016
).
76.
Z.
Wenshan
,
L.
Xiaoping
, and
W.
Zhong
, “
NURBS-based parametric optimization and design of bulbous bow
,”
Chin. J. Ship Res.
12
(
3
),
16
22
(
2017
).
77.
X.
Yin
,
Y.
Lu
,
J.
Zou
, and
L.
Wan
, “
Numerical and experimental study on hydrodynamic bulbous bow hull-form optimization for various service conditions due to slow steaming of container vessel
,”
Proc. Inst. Mech. Eng., Part M
233
(
4
),
1103
1122
(
2019
).
78.
M.
Kotinis
,
M. G.
Parsons
,
T.
Lamb
, and
A.
Sirviente
,
Development and Investigation of the Ballast-Free Ship Concept
(
University of Michigan
,
2005
).
79.
W.
Hong
and
L.
Huabin
, “
Comment on ballast free ship
,”
Int. J. Eng. Appl. Sci.
5
(
12
), 20–22 (
2018
).
80.
N. H.
Kadir
,
A. M.
Abdul Malik
, and
A.
Ali
, “
Experimental of ballast free system with air-injected pressure bubbles in reducing ship resistance
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
90
(
2
),
160
175
(
2022
).
81.
M.
Kotinis
and
M. G.
Parsons
, “
Hydrodynamics of the ballast-free ship revisited
,”
J. Ship Prod. Des.
26
(
4
),
301
310
(
2010
).
82.
E.
Hesham
,
D.
Han
, and
L.
Gao
, in
MATEC Web of Conferences
, edited by
G.
Zhihua
and
L.
Wei-Hsin
(
EDP Sciences
,
2015
), p.
02008
.
83.
M. G.
Parsons
and
M.
Kotinis
,
Further Development and Optimization of the Ballast-Free Ship Design Concept
(Great Lakes Maritime Research Institute,
2008
).
84.
R.
Sharma
and
O. P.
Sha
, “
Practical hydrodynamic design of bulbous bows for ships
,”
Naval Eng. J.
117
(
1
),
57
76
(
2005
).
85.
N.
Rehmatulla
,
J.
Calleya
, and
T.
Smith
, “
The implementation of technical energy efficiency and CO2 emission reduction measures in shipping
,”
Ocean Eng.
139
,
184
197
(
2017
).
86.
A. F.
Molland
,
S. R.
Turnock
,
D. A.
Hudson
, and
I. K. A. P.
Utama
, “
Reducing ship emissions: A review of potential practical improvements in the propulsive efficiency of future ships
,”
Int. J. Marit. Eng.
156
(
A2
),
175
188
(
2014
).
87.
A.
Ali
,
M. I.
Jamil
,
J.
Jiang
,
M.
Shoaib
,
B. U.
Amin
,
S.
Luo
,
X.
Zhan
,
F.
Chen
, and
Q.
Zhang
, “
An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications
,”
J. Polym. Res.
27
(
4
),
85
(
2020
).
88.
M. S.
Selim
,
M. A.
Shenashen
,
S. A.
El-Safty
,
S. A.
Higazy
,
M. M.
Selim
,
H.
Isago
, and
A.
Elmarakbi
, “
Recent progress in marine foul-release polymeric nanocomposite coatings
,”
Prog. Mater. Sci.
87
,
1
32
(
2017
).
89.
A.
Abbott
,
P. D.
Abel
,
D. W.
Arnold
, and
A.
Milne
, “
Cost-benefit analysis of the use of TBT: The case for a treatment approach
,”
Sci. Total Environ.
258
(
1–2
),
5
19
(
2000
).
90.
A.
Farkas
,
N.
Degiuli
, and
I.
Martić
, “
Impact of biofilm on the resistance characteristics and nominal wake
,”
Proc. Inst. Mech. Eng., Part M
234
(
1
),
59
75
(
2020
).
91.
Y. K.
Demirel
,
M.
Khorasanchi
,
O.
Turan
, and
A.
Incecik
, in
Low Carbon Shipping Conference
, (
Uniwersytet Śląski. Wydział Matematyki
,
Fizyki i Chemii
,
2013
), pp.
1
13
.
92.
E.
Almeida
,
T. C.
Diamantino
, and
O.
de Sousa
, “
Marine paints: The particular case of antifouling paints
,”
Prog. Org. Coat.
59
(
1
),
2
20
(
2007
).
93.
L.
Tian
,
Y.
Yin
,
W.
Bing
, and
E.
Jin
, “
Antifouling technology trends in marine environmental protection
,”
J. Bionic Eng.
18
(
2
),
239
263
(
2021
).
94.
I.
Banerjee
,
R. C.
Pangule
, and
R. S.
Kane
, “
Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms
,”
Adv. Mater.
23
(
6
),
690
718
(
2011
).
95.
S.
Pradhan
,
S.
Kumar
,
S.
Mohanty
, and
S. K.
Nayak
, “
Environmentally benign fouling-resistant marine coatings: A review
,”
Polym.-Plast. Technol. Mater.
58
(
5
),
498
518
(
2019
).
96.
W. J.
Yang
,
K. G.
Neoh
,
E. T.
Kang
,
S. L. M.
Teo
, and
D.
Rittschof
, “
Polymer brush coatings for combating marine biofouling
,”
Prog. Polym. Sci.
39
(
5
),
1017
1042
(
2014
).
97.
X.
Pei
and
Q.
Ye
, “
Development of marine antifouling coatings
,” in
Antifouling Surfaces and Materials
(
Springer
,
2015
), pp.
135
149
.
98.
M.
Lejars
,
A.
Margaillan
, and
C.
Bressy
, “
Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings
,”
Chem. Rev.
112
(
8
),
4347
4390
(
2012
).
99.
X.
Han
,
J.
Wu
,
X.
Zhang
,
J.
Shi
,
J.
Wei
,
Y.
Yang
,
B.
Wu
, and
Y.
Feng
, “
Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface
,”
J. Mater. Sci. Technol.
61
,
46
62
(
2021
).
100.
X.
Wang
,
S. M.
Olsen
,
E.
Andres Martinez
,
K. N.
Olsen
, and
S.
Kiil
, “
Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams
,”
J. Coat. Technol. Res.
15
(
4
),
657
669
(
2018
).
101.
E.
Notti
,
M.
Figari
,
A.
Sala
, and
M.
Martelli
, “
Experimental assessment of the fouling control coating effect on the fuel consumption rate
,”
Ocean Eng.
188
,
106233
(
2019
).
102.
M. L.
Hakim
,
B.
Nugroho
,
M. N.
Nurrohman
,
I. K.
Suastika
, and
I. K. A. P.
Utama
, in
IOP Conference Series: Earth and Environmental Science
,
2019
.
103.
K. Z.
Hunsucker
,
J. T.
Hunsucker
,
H.
Gardner
, and
G.
Swain
, “
Static and dynamic comparisons for the evaluation of ship hull coatings
,”
Mar. Technol. Soc. J.
51
(
2
),
71
75
(
2017
).
104.
A.
Camós Noguer
,
S. M.
Olsen
,
S.
Hvilsted
, and
S.
Kiil
, “
Long-term stability of PEG-based antifouling surfaces in seawater
,”
J. Coat. Technol. Res.
13
(
4
),
567
575
(
2016
).
105.
P.-S.
Liu
,
Q.
Chen
,
S.-S.
Wu
,
J.
Shen
, and
S.-C.
Lin
, “
Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion
,”
J. Membr. Sci.
350
,
387
394
(
2010
).
106.
P.
Hu
,
Q.
Xie
,
C.
Ma
, and
G.
Zhang
, “
Silicone-based fouling-release coatings for marine antifouling
,”
Langmuir
36
(
9
),
2170
2183
(
2020
).
107.
G. A.
Pavlov
,
L.
Yun
,
A.
Bliault
, and
S.-L.
He
, in
Air Lubricated and Air Cavity Ships
(
Springer
,
New York, NY
,
2020
), pp.
1
83
.
108.
D.-Y.
Kim
,
J.-Y.
Ha
, and
K.-J.
Paik
, “
Numerical study on the extrapolation method for predicting the full-scale resistance of a ship with an air lubrication system
,”
J. Ocean Eng. Technol.
34
(
6
),
387
393
(
2020
).
109.
W. U.
Hao
,
O.
Yongpeng
, and
Y. E.
Qing
, “
Experimental study of air layer drag reduction on a flat plate and bottom hull of a ship with cavity
,”
Ocean Eng.
183
,
236
248
(
2019
).
110.
H.
Wu
and
Y.
Ou
, “
Analysis of air layer shape formed by air injection at the bottom of flat plate
,”
Ocean Eng.
216
,
108091
(
2020
).
111.
S. H.
Park
and
I.
Lee
, “
Optimization of drag reduction effect of air lubrication for a tanker model
,”
Int. J. Nav. Archit. Ocean Eng.
10
(
4
),
427
438
(
2018
).
112.
C.
Kawakita
and
T.
Hamada
, in
ASME-JSME-KSME 8th Joint Fluids Engineering Conference
(
American Society of Mechanical Engineers
,
2019
).
113.
A. G.
Fotopoulos
and
D. P.
Margaris
, “
Computational analysis of air lubrication system for commercial shipping and impacts on fuel consumption
,”
Computation
8
(
2
),
38
(
2020
).
114.
S. A.
Mäkiharju
,
M.
Perlin
, and
S. L.
Ceccio
, “
On the energy economics of air lubrication drag reduction
,”
Int. J. Nav. Archit. Ocean Eng.
4
(
4
),
412
422
(
2012
).
115.
M.
Giernalczyk
and
P.
Kaminski
, “
Assessment of the propulsion system operation of the ships equipped with the air lubrication system
,”
Sensors
21
(
4
),
1357
(
2021
).
116.
R. D.
Geertsma
,
R. R.
Negenborn
,
K.
Visser
, and
J. J.
Hopman
, “
Design and control of hybrid power and propulsion systems for smart ships: A review of developments
,”
Appl. Energy
194
,
30
54
(
2017
).
117.
C.
Ghenai
,
M.
Bettayeb
,
B.
Brdjanin
, and
A. K.
Hamid
, “
Hybrid solar PV/PEM fuel Cell/Diesel Generator power system for cruise ship: A case study in Stockholm, Sweden
,”
Case Stud. Therm. Eng.
14
,
100497
(
2019
).
118.
M.
Jaurola
,
A.
Hedin
,
S.
Tikkanen
, and
K.
Huhtala
, “
Optimising design and power management in energy-efficient marine vessel power systems: A literature review
,”
J. Mar. Eng. Technol.
18
(
2
),
92
101
(
2019
).
119.
A.
Bordianu
and
G.
Samoilescu
, in
11th International Symposium on Advanced Topics in Electrical Engineering (ATEE)
(
IEEE
,
2019
), pp.
1
6
.
120.
N. R.
Ammar
and
I. S.
Seddiek
, “
Evaluation of the environmental and economic impacts of electric propulsion systems onboard ships: Case study passenger vessel
,”
Environ. Sci. Pollut. Res.
28
,
37851
37866
(
2021
).
121.
M.
Altosole
,
U.
Campora
, and
V.
Vigna
, in
International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)
(IEEE,
2020
), pp.
436
441
.
122.
M.
Perčić
,
I.
Ančić
, and
N.
Vladimir
, “
Life-cycle cost assessments of different power system configurations to reduce the carbon footprint in the Croatian short-sea shipping sector
,”
Renewable Sustainable Energy Rev.
131
,
110028
(
2020
).
123.
B.
Jeong
,
E.
Oguz
,
H.
Wang
, and
P.
Zhou
, “
Multi-criteria decision-making for marine propulsion: Hybrid, diesel electric and diesel mechanical systems from cost-environment-risk perspectives
,”
Appl. Energy
230
,
1065
1081
(
2018
).
124.
H.
Lan
,
S.
Wen
,
Y. Y.
Hong
,
D. C.
Yu
, and
L.
Zhang
, “
Optimal sizing of hybrid PV/diesel/battery in ship power system
,”
Appl. Energy
158
,
26
34
(
2015
).
125.
N. R.
Ammar
and
I. S.
Seddiek
, “
Wind assisted propulsion system onboard ships: Case study Flettner rotors
,”
Ships Offshore Struct.
17
,
1616
1627
(
2021
).
126.
C.
Nuchturee
,
T.
Li
, and
H.
Xia
, “
Energy efficiency of integrated electric propulsion for ships—A review
,”
Renewable Sustainable Energy Rev.
134
,
110145
(
2020
).
127.
R.
Lu
and
J. W.
Ringsberg
, “
Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology
,”
Ships Offshore Struct.
15
(
3
),
249
258
(
2020
).
128.
I. S.
Seddiek
and
N. R.
Ammar
, “
Harnessing wind energy on merchant ships: Case study Flettner rotors onboard bulk carriers
,”
Environ. Sci. Pollut. Res.
28
(
25
),
32695
32707
(
2021
).
129.
W.
Leśniewski
,
D.
Piątek
,
K.
Marszałkowski
, and
W.
Litwin
, “
Small vessel with inboard engine retrofitting concepts; real boat tests, laboratory hybrid drive tests and theoretical studies
,”
Energies
13
(
10
),
2586
(
2020
).
130.
B.
Zahedi
,
L. E.
Norum
, and
K. B.
Ludvigsen
, “
Optimized efficiency of all-electric ships by dc hybrid power systems
,”
J. Power Sources
255
,
341
354
(
2014
).
131.
W.
Yu
,
P.
Zhou
, and
H.
Wang
, “
Evaluation on the energy efficiency and emissions reduction of a short-route hybrid sightseeing ship
,”
Ocean Eng.
162
,
34
42
(
2018
).
132.
K.
Kołwzan
and
M.
Narewski
, “
Alternative fuels for marine applications
,”
Latv. J. Chem.
51
(
4
),
398
406
(
2013
).
133.
I. Ø
Tvedten
and
S.
Bauer
, “Retrofitting towards a greener marine shipping future: Reassembling ship fuels and liquefied natural gas in Norway,”
Energy Research & Social Science
86
,
102423
(
2022
).
134.
S.
Jafarzadeh
,
N.
Paltrinieri
,
I. B.
Utne
, and
H.
Ellingsen
, “
LNG-fuelled fishing vessels: A systems engineering approach
,”
Transp. Res., Part D
50
,
202
222
(
2017
).
135.
N.
Pavlenko
,
B.
Comer
,
Y.
Zhou
,
N.
Clark
, and
D.
Rutherford
, in
ICCT Working Paper
,
2020
.
136.
IMO
,
Fourth Imo GHG Study 2020 International Maritime Organization (IMO)
(
IMO
,
2021
).
137.
C.
Le Fevre
,
A Review of Demand Prospects for LNG as a Marine Transport Fuel
(The Oxford Institute for Energy Studies,
2018
).
138.
J.
Havens
and
J.
Venart
, “
Fire performance of LNG carriers insulated with polystyrene foam
,”
J. Hazard. Mater.
158
(
2–3
),
273
279
(
2008
).
139.
P.
Lv
,
Y.
Zhuang
,
J.
Deng
, and
W.
Su
, “
Study on lockage safety of LNG-fueled ships based on FSA
,”
PLoS One
12
(
4
),
e0174448
(
2017
).
140.
H.
Nubli
,
A. R.
Prabowo
, and
J. M.
Sohn
, in
Volume 2A: Structures, Safety, and Reliability
(
American Society of Mechanical Engineers
,
2020
).
141.
M.
Kalikatzarakis
,
G.
Theotokatos
,
A.
Coraddu
,
P.
Sayan
, and
S. Y.
Wong
, “
Model based analysis of the boil-off gas management and control for LNG fuelled vessels
,”
Energy
251
,
123872
(
2022
).
142.
SIGTTO
,
Guidance for the Prevention of Rollover in LNG Ships
(
SIGTTO
,
2012
).
143.
O.
Schinas
and
M.
Butler
, “
Feasibility and commercial considerations of LNG-fueled ships
,”
Ocean Eng.
122
,
84
96
(
2016
).
144.
I.
Ozturk
, “
Utilizing biofuels for sustainable development in the panel of 17 developed and developing countries
,”
GCB Bioenergy
8
(
4
),
826
836
(
2016
).
145.
P. S.
Nigam
and
A.
Singh
, “
Production of liquid biofuels from renewable resources
,”
Prog. Energy Combust. Sci.
37
(
1
),
52
68
(
2011
).
146.
K.
Sudhakar
,
R.
Mamat
,
M.
Samykano
,
W. H.
Azmi
,
W. F. W.
Ishak
, and
T.
Yusaf
, “
An overview of marine macroalgae as bioresource
,”
Renewable Sustainable Energy Rev.
91
,
165
179
(
2018
).
147.
F.
Alam
,
S.
Mobin
, and
H.
Chowdhury
, “
Third generation biofuel from algae
,”
Procedia Eng.
105
,
763
768
(
2015
).
148.
H. A.
Alalwan
,
A. H.
Alminshid
, and
H. A. S.
Aljaafari
, “
Promising evolution of biofuel generations. Subject review
,”
Renewable Energy Focus
28
,
127
139
(
2019
).
149.
D.
Singh
,
D.
Sharma
,
S. L.
Soni
,
S.
Sharma
,
P.
Kumar Sharma
, and
A.
Jhalani
, “
A review on feedstocks, production processes, and yield for different generations of biodiesel
,”
Fuel
262
,
116553
(
2020
).
150.
S. N.
Naik
,
V. V.
Goud
,
P. K.
Rout
, and
A. K.
Dalai
, “
Production of first and second generation biofuels: A comprehensive review
,”
Renewable Sustainable Energy Rev.
14
(
2
),
578
597
(
2010
).
151.
G.
Chen
,
L.
Zhao
, and
Y.
Qi
, “
Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review
,”
Appl. Energy
137
,
282
291
(
2015
).
152.
B.
Abdullah
,
S.
Muhammad
,
Z.
Shokravi
,
S.
Ismail
,
K.
Kassim
,
A.
Mahmood
, and
M.
Aziz
, “
Fourth generation biofuel: A review on risks and mitigation strategies
,”
Renewable Sustainable Energy Rev.
107
,
37
50
(
2019
).
153.
J. I.
Oh
,
J.
Lee
,
K. Y. A.
Lin
,
E. E.
Kwon
, and
Y.
Fai Tsang
, “
Biogas production from food waste via anaerobic digestion with wood chips
,”
Energy Environ.
29
(
8
),
1365
1372
(
2018
).
154.
US Energy Information Administration
, “Monthly biodiesel production report” (
US Energy Information Administration
,
2021
).
155.
R. A.
Lee
and
J. M.
Lavoie
, “
From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity
,”
Animal Front.
3
(
2
),
6
11
(
2013
).
156.
C. Y.
Lin
, “
Strategies for promoting biodiesel use in marine vessels
,”
Mar. Policy
40
(
1
),
84
90
(
2013
).
157.
C. W.
Mohd Noor
,
M. M.
Noor
, and
R.
Mamat
, “
Biodiesel as alternative fuel for marine diesel engine applications: A review
,”
Renewable Sustainable Energy Rev.
94
,
127
142
(
2018
).
158.
E. G.
Giakoumis
, “
A statistical investigation of biodiesel effects on regulated exhaust emissions during transient cycles
,”
Appl. Energy
98
,
273
291
(
2012
).
159.
A. F.
Yusop
,
R.
Mamat
,
T.
Yusaf
,
G.
Najafi
,
M. H. M.
Yasin
, and
A. M.
Khathri
, “
Analysis of particulate matter (PM) emissions in diesel engines using palm oil biodiesel blended with diesel fuel
,”
Energies
11
(
5
),
1039
(
2018
).
160.
K.
Moirangthem
, “
Alternative fuels for marine and inland waterways
,” Joint Research Centre Technical Report N. EUR 27770 EN,
2016
.
161.
United States Environmental Protection Agency
, A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions (United States Environmental Protection Agency,
2002
).
162.
US DOE
,
Argonne GREET Sample Results
(
U.S. Department Energy
,
2020
).
163.
G.
Anitescu
and
T. J.
Bruno
, “
Liquid biofuels: Fluid properties to optimize feedstock selection, processing, refining/blending, storage/transportation, and combustion
,”
Energy Fuels
26
,
324
348
(
2012
).
164.
K. A.
Sorate
and
P. V.
Bhale
, “
Biodiesel properties and automotive system compatibility issues
,”
Renewable Sustainable Energy Rev.
41
,
777
798
(
2015
).
165.
W.
Wang
,
F.
Li
, and
Y.
Li
, “
Effect of biodiesel ester structure optimization on low temperature performance and oxidation stability
,”
J. Mater. Res. Technol.
9
(
3
),
2727
2736
(
2020
).
166.
H. C.
Ong
,
H. H.
Masjuki
,
T. M. I.
Mahlia
,
A. S.
Silitonga
,
W. T.
Chong
, and
K. Y.
Leong
, “
Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine
,”
Energy Convers. Manage.
81
,
30
40
(
2014
).
167.
W.
Bai
,
W.
Geng
,
S.
Wang
, and
F.
Zhang
, “
Biosynthesis, regulation, and engineering of microbially produced branched biofuels
,”
Biotechnol. Biofuels
12
(
1
),
84
(
2019
).
168.
B. R.
Moser
, “
Biodiesel production, properties, and feedstocks
,”
In Vitro Cell. Dev. Biol.
45
(
3
),
229
266
(
2009
).
169.
J.
Saleh
,
M. A.
Dubé
, and
A. Y.
Tremblay
, “
Effect of soap, methanol, and water on glycerol particle size in biodiesel purification
,”
Energy Fuels
24
(
11
),
6179
6186
(
2010
).
170.
A.
Contreras
,
S.
Yiǧit
,
K.
Özay
, and
T. N.
Veziroǧlu
, “
Hydrogen as aviation fuel: A comparison with hydrocarbon fuels
,”
Int. J. Hydrogen Energy
22
(
10–11
),
1053
1060
(
1997
).
171.
K.
Kim
,
G.
Roh
,
W.
Kim
, and
K.
Chun
, “
A preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments
,”
J. Mar. Sci. Eng.
8
(
3
),
183
(
2020
).
172.
C.
Deniz
and
B.
Zincir
, “
Environmental and economical assessment of alternative marine fuels
,”
J. Cleaner Prod.
113
,
438
449
(
2016
).
173.
S.
Atilhan
,
S.
Park
,
M. M.
El-Halwagi
,
M.
Atilhan
,
M.
Moore
, and
R. B.
Nielsen
, “
Green hydrogen as an alternative fuel for the shipping industry
,”
Curr. Opin. Chem. Eng.
31
,
100668
(
2021
).
174.
Y.
Bicer
and
I.
Dincer
, “
Clean fuel options with hydrogen for sea transportation: A life cycle approach
,”
Int. J. Hydrogen Energy
43
(
2
),
1179
1193
(
2018
).
175.
R.
Aronietis
,
C.
Sys
,
E.
van Hassel
, and
T.
Vanelslander
, “
Forecasting port-level demand for LNG as a ship fuel: The case of the port of Antwerp
,”
J. Shipping Trade
1
,
2
(
2016
).
176.
E.
Rivard
,
M.
Trudeau
, and
K.
Zaghib
, “
Hydrogen storage for mobility: A review
,”
Materials
12
(
12
),
1973
(
2019
).
177.
V.
Kumar
,
D.
Gupta
, and
N.
Kumar
, “
Hydrogen use in internal combustion engine: A review
,”
Int. J. Adv. Culture Technol.
3
(
2
),
87
99
(
2015
).
178.
H.
Guo
,
S.
Zhou
,
J.
Zou
, and
M.
Shreka
, “
A numerical investigation on De-NOx technology and abnormal combustion control for a hydrogen engine with EGR system
,”
Processes
8
(
9
),
1178
(
2020
).
179.
H. L.
Yip
,
A.
Srna
,
A. C. Y.
Yuen
,
S.
Kook
,
R. A.
Taylor
,
G. H.
Yeoh
,
P. R.
Medwell
, and
Q. N.
Chan
, “
A review of hydrogen direct injection for internal combustion engines: Towards carbon-free combustion
,”
Appl. Sci.
9
(
22
),
4842
(
2019
).
180.
C.
White
,
R.
Steeper
, and
A.
Lutz
, “
The hydrogen-fueled internal combustion engine: A technical review
,”
Int. J. Hydrogen Energy
31
(
10
),
1292
1305
(
2006
).
181.
K. L.
Tay
,
W.
Yang
,
S. K.
Chou
,
D.
Zhou
,
J.
Li
,
W.
Yu
,
F.
Zhao
, and
B.
Mohan
, “
Effects of injection timing and pilot fuel on the combustion of a kerosene-diesel/ammonia dual fuel engine: A numerical study
,”
Energy Procedia
105
,
4621
4626
(
2017
).
182.
L.
van Biert
,
M.
Godjevac
,
K.
Visser
, and
P. V.
Aravind
, “
A review of fuel cell systems for maritime applications
,”
J. Power Sources
327
,
345
364
(
2016
).
183.
C. J.
McKinlay
,
S. R.
Turnock
, and
D. A.
Hudson
, “
Route to zero emission shipping: Hydrogen, ammonia or methanol?
,”
Int. J. Hydrogen Energy
46
(
55
),
28282
28297
(
2021
).
184.
Y. M. A.
Welaya
,
M. M.
El Gohary
, and
N. R.
Ammar
, “
A comparison between fuel cells and other alternatives for marine electric power generation
,”
Int. J. Nav. Archit. Ocean Eng.
3
(
2
),
141
149
(
2011
).
185.
J. H.
Wee
, “
Contribution of fuel cell systems to CO2 emission reduction in their application fields
,”
Renewable Sustainable Energy Rev.
14
(
2
),
735
744
(
2010
).
186.
O. B.
Inal
and
C.
Deniz
, “
Assessment of fuel cell types for ships: Based on multi-criteria decision analysis
,”
J. Cleaner Prod.
265
,
121734
(
2020
).
187.
J.
Han
,
J. F.
Charpentier
, and
T.
Tang
, in
IEEE International Symposium on Industrial Electronics
(
IEEE
,
2012
), pp.
1456
1461
.
188.
I. J. S.
Veldhuis
,
R. N.
Richardson
, and
H. B. J.
Stone
, “
Hydrogen fuel in a marine environment
,”
Int. J. Hydrogen Energy
32
(
13
),
2553
2566
(
2007
).
189.
M.
Cheliotis
,
E.
Boulougouris
,
N. L.
Trivyza
,
G.
Theotokatos
,
G.
Livanos
,
G.
Mantalos
,
A.
Stubos
,
E.
Stamatakis
, and
A.
Venetsanos
, “
Review on the safe use of ammonia fuel cells in the maritime industry
,”
Energies
14
(
11
),
3023
(
2021
).
190.
J.
Cheng
,
G.
He
, and
F.
Zhang
, “
A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies
,”
Int. J. Hydrogen Energy
40
(
23
),
7348
7360
(
2015
).
191.
C. J.
McKinlay
,
S. R.
Turnock
, and
D. A.
Hudson
, in
RINA, Royal Institution of Naval Architects—International Conference on LNG/LPG and Alternative Fuel Ships 2020
,
2020
.
192.
A.
Afif
,
N.
Radenahmad
,
Q.
Cheok
,
S.
Shams
,
J. H.
Kim
, and
A. K.
Azad
, “
Ammonia-fed fuel cells: A comprehensive review
,”
Renewable Sustainable Energy Rev.
60
,
822
835
(
2016
).
193.
L.
Van Hoecke
,
L.
Laffineur
,
R.
Campe
,
P.
Perreault
,
S. W.
Verbruggen
, and
S.
Lenaerts
, “
Challenges in the use of hydrogen for maritime applications
,”
Energy Environ. Sci.
14
(
2
),
815
843
(
2021
).
194.
A.
Al-Enazi
,
E. C.
Okonkwo
,
Y.
Bicer
, and
T.
Al-Ansari
, “
A review of cleaner alternative fuels for maritime transportation
,”
Energy Rep.
7
,
1962
1985
(
2021
).
195.
S.
Sharma
and
S. K.
Ghoshal
, “
Hydrogen the future transportation fuel: From production to applications
,”
Renewable Sustainable Energy Rev.
43
,
1151
1158
(
2015
).
196.
Z.
Navas-Anguita
,
D.
García-Gusano
,
J.
Dufour
, and
D.
Iribarren
, “
Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production
,”
Sci. Total Environ.
771
,
145432
(
2021
).
197.
R.
Kothari
,
D.
Buddhi
, and
R. L.
Sawhney
, “
Comparison of environmental and economic aspects of various hydrogen production methods
,”
Renewable Sustainable Energy Rev.
12
(
2
),
553
563
(
2008
).
198.
B.
Parkinson
,
P.
Balcombe
,
J. F.
Speirs
,
A. D.
Hawkes
, and
K.
Hellgardt
, “
Levelized cost of CO2 mitigation from hydrogen production routes
,”
Energy Environ. Sci.
12
(
1
),
19
40
(
2019
).
199.
F.
Suleman
,
I.
Dincer
, and
M.
Agelin-Chaab
, “
Environmental impact assessment and comparison of some hydrogen production options
,”
Int. J. Hydrogen Energy
40
(
21
),
6976
6987
(
2015
).
200.
J.-J.
Hwang
, “
Sustainability study of hydrogen pathways for fuel cell vehicle applications
,”
Renewable Sustainable Energy Rev.
19
,
220
229
(
2013
).
201.
K.
Reddi
,
A.
Elgowainy
,
N.
Rustagi
, and
E.
Gupta
, “
Impact of hydrogen SAE J2601 fueling methods on fueling time of light-duty fuel cell electric vehicles
,”
Int. J. Hydrogen Energy
42
(
26
),
16675
16685
(
2017
).
202.
J. K.
Partridge
,
AIP Conf. Proc.
1424
1765
1770
(
2012
).
203.
A.
Groysman
,
Physicochemical Resistance of Engineering Materials in Ammonia and its Derivatives
(The Israel Institute of Technology,
2017
).
204.
MAN Energy Solution
,
Engineering the Future Two-Stroke Green-Ammonia Engine
(
MAN Energy Solution
,
2019
).
205.
H.
Fan
,
H.
Enshaei
,
S. G.
Jayasinghe
,
S. H.
Tan
, and
C.
Zhang
, “
Quantitative risk assessment for ammonia ship‐to‐ship bunkering based on Bayesian network
,”
Process Safety Prog.
41
(
2
),
395
410
(
2022
).
You do not currently have access to this content.