It is an irresistible argument that there is a requirement for sustainable resources for energy production as there is an enormous rise in demand for energy. Various sectors involve a wide range of energy consumption shares. Conventional fuels are exhaustible and can be replaced with sustainable substitutes, i.e., biofuels including bio-ethanol, biogas, and biodiesel. Recently, biodiesel has gained popularity due to the availability and affordability of feedstock. To extract biodiesel from vegetable oils, the transesterification process is widely used. Biodiesel blends can be used as a direct substitute in diesel engines, which may result in a slight reduction in hydrocarbons, carbon monoxide, and an increase in oxides of nitrogen. The performance parameters may increase or decrease depending on the blend type and calorific value. The objective of this review is to analyze the performance and emission characteristics of second and third-generation biodiesel blends enriched with hydrogen and to explore techniques for improvement such as the addition of additives. Research has shown that the addition of hydrogen improves combustion, resulting in increased brake thermal efficiency and reduced brake specific fuel consumption. Similarly, the inclusion of additives can reduce the production of oxides of nitrogen during combustion. In conclusion, biodiesel blends enriched with hydrogen and additives can offer improved performance, combustion, and emission characteristics. To meet energy demand sustainably and reduce reliance on conventional fuels, further research is necessary to ensure the long-term viability of biodiesel as a sustainable energy source.

1.
C.
Deheri
,
S. K.
Acharya
,
D. N.
Thatoi
, and
A. P.
Mohanty
, “
A review on performance of biogas and hydrogen on diesel engine in dual fuel mode
,”
Fuel
260
,
116337
(
2020
).
2.
S.
Ramalingam
,
S.
Rajendran
,
P.
Ganesan
, and
M.
Govindasamy
, “
Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine—A review
,”
Renewable Sustainable Energy Rev.
81
,
775
788
(
2018
).
3.
U.
Rajak
and
T. N.
Verma
, “
Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine
,”
Energy Convers. Manage.
166
,
704
718
(
2018
).
4.
A. A.
Al-Kheraif
,
A.
Syed
,
A. M.
Elgorban
,
D. D.
Divakar
,
R.
Shanmuganathan
, and
K.
Brindhadevi
, “
Experimental assessment of performance, combustion and emission characteristics of diesel engine fuelled by combined non-edible blends with nanoparticles
,”
Fuel
295
,
120590
(
2021
).
5.
A. K.
Choudhary
,
H.
Chelladurai
, and
C.
Kannan
, “
Performance analysis of bioethanol (Water Hyacinth) on diesel engine
,”
Int. J. Green Energy
13
(
13
),
1369
1379
(
2016
).
6.
F. S.
Mirhashemi
and
H.
Sadrnia
, “
NOX emissions of compression ignition engines fueled with various biodiesel blends: A review
,”
J. Energy Inst.
93
(
1
),
129
151
(
2020
).
7.
H. C.
Ong
,
A. S.
Silitonga
,
H. H.
Masjuki
,
T. M. I.
Mahlia
,
W. T.
Chong
, and
M. H.
Boosroh
, “
Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra
,”
Energy Convers. Manage.
73
,
245
255
(
2013
).
8.
D. T.
Tran
,
J. S.
Chang
, and
D. J.
Lee
, “
Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes
,”
Appl. Energy
185
,
376
409
(
2017
).
9.
H. A.
Alalwan
,
A. H.
Alminshid
, and
H. A. S.
Aljaafari
, “
Promising evolution of biofuel generations. Subject review
,”
Renewable Energy Focus
28
,
127
139
(
2019
).
10.
V.
Kumar
and
A. K.
Choudhary
, “
A hybrid response surface methodology and multi-criteria decision making model to investigate the performance and emission characteristics of a diesel engine fueled with phenolic antioxidant additive and biodiesel blends
,”
J. Energy Resour. Technol.
145
(
9
),
092302
(
2023
).
11.
A. K.
Choudhary
, “
Effect of bioethanol-diesel blends on the vibrations of diesel engine
,” in
Recent Advances in Mechanical Engineering: Select Proceedings of RAME 2020
(
Springer
,
2021
), pp.
407
418
.
12.
A.
Singh
,
A. K.
Choudhary
, and
S.
Sinha
, “
An investigation of performance and emissions of diesel engine using heterogeneous catalyst Jatropha biodiesel: A sustainable model using Taguchi and response surface methodology
,”
J. Energy Resour. Technol.
145
(
2
),
22301
(
2023
).
13.
A. L.
de Carvalho
,
E. A.
Cardoso
,
G. O.
da Rocha
,
L. S. G.
Teixeira
,
I. M.
Pepe
, and
D. M.
Grosjean
, “
Carboxylic acid emissions from soybean biodiesel oxidation in the EN14112 (Rancimat) stability test
,”
Fuel
173
,
29
36
(
2016
).
14.
J. F.
Philip
,
S.
Sudalai
,
M. G.
Devanesan
,
R.
Babazadeh
, and
A.
Arumugam
, “
Environmental sustainability, technoeconomic analysis, and policy-making aspects of biodiesel
,” in
Production of Biodiesel From Non-Edible Sources
(
Elsevier
,
2022
), pp.
211
239
.
15.
A.
Singh
,
S.
Sinha
, and
A. K.
Choudhary
, “
Response surface methodology approach for combustion analysis of compression ignition engine fueled with Jatropha biodiesel produced by using heterogeneous catalyst
,” in
Optimization of Industrial Systems
(
Wiley
,
2022
), pp.
173
184
.
16.
B.
Sharma
,
C.
Larroche
, and
C. G.
Dussap
, “
Comprehensive assessment of 2G bioethanol production
,”
Bioresour. Technol.
313
,
123630
(
2020
).
17.
A. K.
Choudhary
,
H.
Chelladurai
, and
C.
Kannan
, “
Optimization of combustion performance of bioethanol (water hyacinth) diesel blends on diesel engine using response surface methodology
,”
Arabian J. Sci. Eng.
40
(
12
),
3675
3695
(
2015
).
18.
K.
Chaiwong
,
T.
Kiatsiriroat
,
N.
Vorayos
, and
C.
Thararax
, “
Study of bio-oil and bio-char production from algae by slow pyrolysis
,”
Biomass Bioenergy
56
,
600
606
(
2013
).
19.
C. G.
Liu
et al, “
Cellulosic ethanol production: Progress, challenges and strategies for solutions
,”
Biotechnol. Adv.
37
(
3
),
491
504
(
2019
).
20.
G.
Kabir
and
B. H.
Hameed
, “
Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals
,”
Renewable Sustainable Energy Rev.
70
,
945
967
(
2017
).
21.
S.
Nanda
,
R.
Rana
,
P. K.
Sarangi
,
A. K.
Dalai
, and
J. A.
Kozinski
, “
A broad introduction to first-, second-, and third-generation biofuels
,”
Recent Advancements in Biofuels and Bioenergy Utilization
(
Springer
,
2018
), pp.
1
25
.
22.
A. K.
Choudhary
,
H.
Chelladurai
, and
C.
Kannan
, “
Performance analysis of diesel engine using bio ethanol (water hyacinth) by response surface methodology (RSM)
,”
Appl. Mech. Mater.
737
,
53
59
(
2015
).
23.
A.
Ramli
et al, “
Bifunctional heterogeneous catalysts for biodiesel production using low cost feedstocks: A future perspective
,”
Front. Bioenergy Biofuels
285
,
285
299
(
2017
).
24.
S. S.
Lam
,
R. K.
Liew
,
A.
Jusoh
,
C. T.
Chong
,
F. N.
Ani
, and
H. A.
Chase
, “
Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques
,”
Renewable Sustainable Energy Rev.
53
,
741
753
(
2016
).
25.
A.
Abbaszaadeh
,
B.
Ghobadian
,
M. R.
Omidkhah
, and
G.
Najafi
, “
Current biodiesel production technologies: A comparative review
,”
Energy Convers. Manage.
63
,
138
148
(
2012
).
26.
R.
Nayab
et al, “
Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials–A review
,”
Fuel
328
,
125254
(
2022
).
27.
S.
Nomanbhay
,
R.
Hussein
, and
M. Y.
Ong
, “
Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: A review
,”
Green Chem. Lett. Rev.
11
(
2
),
135
157
(
2018
).
28.
A. T.
Hoang
et al, “
Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability
,”
Fuel Process. Technol.
223
,
106997
(
2021
).
29.
A.
Singh
,
A. K.
Choudhary
,
S.
Sinha
,
H.
Panchal
, and
K. K.
Sadasivuni
, “
Analysis of vibrations in a diesel engine produced by Jatropha biodiesel using heterogeneous catalyst
,”
Energy Environ.
34
,
407
428
(
2023
).
30.
A. W.
Schwab
,
M. O.
Bagby
, and
B.
Freedman
, “
Diesel fuels from vegetable oils
,”
Prepr. Symp
31
(
1
),
337
(
1986
).
31.
G.
Vicente
,
M.
Martínez
, and
J.
Aracil
, “
Integrated biodiesel production: A comparison of different homogeneous catalysts systems
,”
Bioresour. Technol.
92
(
3
),
297
305
(
2004
).
32.
R.
Selvabharathi
,
M.
Selvam
, and
S. K.
Palani
, “
Investigation of performance, combustion, and emission characteristics of diesel engine equipped with exhaust gas recirculation using ceria and zirconia nanoparticles-blended rice bran biodiesel
,”
Energy Sources, Part A
44
(
2
),
5508
5526
(
2022
).
33.
F.
Moazeni
,
Y.-C.
Chen
, and
G.
Zhang
, “
Enzymatic transesterification for biodiesel production from used cooking oil, a review
,”
J. Cleaner Prod.
216
,
117
128
(
2019
).
34.
S. K.
Bhatia
et al, “
An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies
,”
Fuel
285
,
119117
(
2021
).
35.
P.
Nikolaidis
and
A.
Poullikkas
, “
A comparative overview of hydrogen production processes
,”
Renewable Sustainable Energy Rev.
67
,
597
611
(
2017
).
36.
B. B.
Sahoo
,
N.
Sahoo
, and
U. K.
Saha
, “
Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—A critical review
,”
Renewable Sustainable Energy Rev.
13
(
6–7
),
1151
1184
(
2009
).
37.
S. E.
Hosseini
and
M. A.
Wahid
, “
Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development
,”
Renewable Sustainable Energy Rev.
57
,
850
866
(
2016
).
38.
I.
Dincer
and
C.
Acar
, “
Innovation in hydrogen production
,”
Int. J. Hydrogen Energy
42
(
22
),
14843
14864
(
2017
).
39.
B. S.
Rathi
,
P. S.
Kumar
,
G.
Rangasamy
, and
S.
Rajendran
, “
A critical review on Biohydrogen generation from biomass
,”
Int. J. Hydrogen Energy
(in press) (
2022
).
40.
M.
Yu
,
K.
Wang
, and
H.
Vredenburg
, “
Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen
,”
Int. J. Hydrogen Energy
46
(
41
),
21261
21273
(
2021
).
41.
P. J.
Megía
,
A. J.
Vizcaíno
,
J. A.
Calles
, and
A.
Carrero
, “
Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review
,”
Energy Fuels
35
(
20
),
16403
16415
(
2021
).
42.
C.
Acar
,
A.
Beskese
, and
G. T.
Temur
, “
Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP
,”
Int. J. Hydrogen Energy
43
(
39
),
18059
18076
(
2018
).
43.
H.
Hosseinzadeh-Bandbafha
,
M.
Tabatabaei
,
M.
Aghbashlo
,
M.
Khanali
, and
A.
Demirbas
, “
A comprehensive review on the environmental impacts of diesel/biodiesel additives
,”
Energy Convers. Manage.
174
,
579
614
(
2018
).
44.
H.
Ishaq
,
I.
Dincer
, and
C.
Crawford
, “
A review on hydrogen production and utilization: Challenges and opportunities
,”
Int. J. Hydrogen Energy
47
(
62
),
26238
26264
(
2022
).
45.
M. V.
Kumar
,
A. V.
Babu
, and
P. R.
Kumar
, “
The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine
,”
Alexandria Eng. J.
57
(
1
),
509
516
(
2018
).
46.
C. C.
Lee
,
M.-V.
Tran
,
B. T.
Tan
,
G.
Scribano
, and
C. T.
Chong
, “
A comprehensive review on the effects of additives on fundamental combustion characteristics and pollutant formation of biodiesel and ethanol
,”
Fuel
288
,
119749
(
2021
).
47.
K.
Varatharajan
and
D. S.
Pushparani
, “
Screening of antioxidant additives for biodiesel fuels
,”
Renewable Sustainable Energy Rev.
82
,
2017
2028
(
2018
).
48.
M. S.
Gad
,
M. K.
El-Fakharany
, and
E. A.
Elsharkawy
, “
Effect of HHO gas enrichment on performance and emissions of a diesel engine fueled by biodiesel blend with kerosene additive
,”
Fuel
280
,
118632
(
2020
).
49.
S.
Ramalingam
,
M.
DhakshinaMoorthy
, and
S.
Subramanian
, “
Effect of natural antioxidant additive on hydrogen-enriched biodiesel operated compression ignition engine
,”
Int. J. Hydrogen Energy
47
(
48
),
20771
20783
(
2022
).
50.
S.
Manigandan
et al, “
Comparative study of nanoadditives TiO2, CNT, Al2O3, CuO and CeO2 on reduction of diesel engine emission operating on hydrogen fuel blends
,”
Fuel
262
,
116336
(
2020
).
51.
P.
Murugesan
et al, “
Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends
,”
Int. J. Hydrogen Energy
47
(
88
),
37617
37634
(
2021
).
52.
S.
Javed
,
Y. V. V.
Satyanarayana Murthy
,
M. R. S.
Satyanarayana
,
R.
Rajeswara Reddy
, and
K.
Rajagopal
, “
Effect of a zinc oxide nanoparticle fuel additive on the emission reduction of a hydrogen dual-fuelled engine with Jatropha methyl ester biodiesel blends
,”
J. Cleaner Prod.
137
,
490
506
(
2016
).
53.
X.
Zhang
et al, “
Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics
,”
Fuel
307
,
121780
(
2022
).
54.
C.
Xia
,
K.
Brindhadevi
,
A.
Elfasakhany
,
M.
Alsehli
, and
S.
Tola
, “
Performance, combustion and emission analysis of castor oil biodiesel blends enriched with nanoadditives and hydrogen fuel using CI engine
,”
Fuel
306
,
121541
(
2021
).
55.
S.
Mohan
and
P.
Dinesha
, “
Performance and emissions of biodiesel engine with hydrogen peroxide emulsification and cerium oxide (CeO2) nanoparticle additives
,”
Fuel
319
,
123872
(
2022
).
56.
R.
Shanmuganathan
et al, “
Spirulina microalgae blend with biohydrogen and nanocatalyst TiO2 and Ce2O3 as step towards emission reduction: Promoter or inhibitor
,”
Fuel
334
,
126791
(
2023
).
57.
S.
Rami Reddy
,
G.
Murali
,
A.
Ahamad Shaik
,
V.
Dhana Raju
, and
M. B. S.
Sreekara Reddy
, “
Experimental evaluation of diesel engine powered with waste mango seed biodiesel at different injection timings and EGR rates
,”
Fuel
285
,
119047
(
2021
).
58.
A.
Suhel
,
N. A.
Rahim
,
M. R. A.
Rahman
, and
K. A.
Bin Ahmad
, “
Engine's behaviour on magnetite nanoparticles as additive and hydrogen addition of chicken fat methyl ester fuelled DICI engine: A dual fuel approach
,”
Int. J. Hydrogen Energy
46
(
27
),
14824
14843
(
2021
).
59.
V.
Thanigaivelan
,
M.
Loganathan
,
M.
Vikneswaran
,
S.
Venkatramanan
, and
M.
Manickam
, “
Effect of hydrogen and ethanol addition in cashew nut shell liquid biodiesel operated direct injection (DI) diesel engine
,”
Int. J. Hydrogen Energy
47
(
8
),
5111
5129
(
2022
).
60.
M.
Loganathan
,
V. M.
Madhavan
,
K. A.
Balasubramanian
,
V.
Thanigaivelan
,
M.
Vikneswaran
, and
A.
Anbarasu
, “
Investigation on the effect of diethyl ether with hydrogen-enriched cashew nut shell (CNS) biodiesel in direct injection (DI) diesel engine
,”
Fuel
277
,
118165
(
2020
).
61.
L.
Yi-Chia
et al, “
Role of chicken fat waste and hydrogen energy ratio as the potential alternate fuel with nano-additives: Insights into resources and atmospheric remediation process
,”
Environ. Res.
216
,
114742
(
2023
).
62.
S.
Mohan
,
P.
Dinesha
, and
V.
Aiswarya
, “
Synergetic influence of hydrogen peroxide emulsification and MWCNT nanoparticles to reduce engine exhaust emissions using B20 biodiesel blend
,”
Int. J. Hydrogen Energy
47
(
51
),
21863
21877
(
2022
).
63.
S.
Das
and
B.
Das
, “
The characteristics of waste-cooking palm biodiesel-fueled CRDI diesel engines: Effect hydrogen enrichment and nanoparticle addition
,”
Int. J. Hydrogen Energy
48
(
39
),
14908
14922
(
2023
).
64.
L.
Tarabet
,
M. S.
Lounici
,
K.
Loubar
,
K.
Khiari
,
R.
Bouguessa
, and
M.
Tazerout
, “
Hydrogen supplemented natural gas effect on a DI diesel engine operating under dual fuel mode with a biodiesel pilot fuel
,”
Int. J. Hydrogen Energy
43
(
11
),
5961
5971
(
2018
).
65.
M.
Elkelawy
,
S. E. H.
Etaiw
,
H. A.-E.
Bastawissi
,
M. I.
Ayad
,
A. M.
Radwan
, and
M. M.
Dawood
, “
Diesel/biodiesel/silver thiocyanate nanoparticles/hydrogen peroxide blends as new fuel for enhancement of performance, combustion, and Emission characteristics of a diesel engine
,”
Energy
216
,
119284
(
2021
).
66.
S.
Sarıkoç
,
S.
Ünalan
, and
İ.
Örs
, “
Experimental study of hydrogen addition on waste cooking oil biodiesel-diesel-butanol fuel blends in a DI diesel engine
,”
BioEnergy Res.
12
,
443
456
(
2019
).
67.
E.
Tosun
and
M.
Özcanlı
, “
Hydrogen enrichment effects on performance and emission characteristics of a diesel engine operated with diesel-soybean biodiesel blends with nanoparticle addition
,”
Eng. Sci. Technol., Int. J.
24
(
3
),
648
654
(
2021
).
68.
A.
Singh
,
S.
Sinha
,
A. K.
Choudhary
, and
H.
Chelladurai
, “
Biodiesel production using heterogeneous catalyst, application of Taguchi robust design and response surface methodology to optimise diesel engine performance fuelled with Jatropha biodiesel blends
,”
Int. J. Ambient Energy
43
(
1
),
2976
2987
(
2022
).
69.
S.
Das
,
S.
Kanth
,
B.
Das
, and
S.
Debbarma
, “
Experimental evaluation of hydrogen enrichment in a dual-fueled CRDI diesel engine
,”
Int. J. Hydrogen Energy
47
(
20
),
11039
11051
(
2022
).
70.
P. V.
Kumar
,
B.
Ashok
,
R.
Vignesh
,
J. P.
Bhasker
, and
A. N.
Kumar
, “
Evaluation of performance, emissions and combustion attributes of CI engine using palmyra biodiesel blend with distinct compression ratios, EGR rates and nano-particles
,”
Fuel
321
,
124092
(
2022
).
71.
S.
Thiyagarajan
et al, “
Effect of hydrogen on compression-ignition (CI) engine fueled with vegetable oil/biodiesel from various feedstocks: A review
,”
Int. J. Hydrogen Energy
47
,
37648
37667
(
2022
).
72.
P.
Rosha
,
S. K.
Mohapatra
,
S. K.
Mahla
,
H. M.
Cho
,
B. S.
Chauhan
, and
A.
Dhir
, “
Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend
,”
Energy
178
,
676
684
(
2019
).
73.
S.
Verma
,
A.
Suman
,
L. M.
Das
,
S. C.
Kaushik
, and
S. K.
Tyagi
, “
A renewable pathway towards increased utilization of hydrogen in diesel engines
,”
Int. J. Hydrogen Energy
45
(
8
),
5577
5587
(
2020
).
You do not currently have access to this content.