A fair and efficient renewable energy quota allocation scheme is essential for China to implement the Renewable Portfolio Standards policy. Therefore, based on the principles of fairness and efficiency, this paper comprehensively considers the differences among provinces and then proposes and adopts an improved zero-sum gains data envelopment analysis method to reallocate quotas. Furthermore, for verifying the superiority of the proposed method, this paper establishes a composite index based on the Gini coefficient and the Theil index to compare the rationality of the distribution results. Finally, this paper discusses the relevant advice for the development of renewable energy. The results validate that the proposed method is superior to the traditional method. Additionally, according to the final quota distribution scheme, there are fewer renewable energy quotas in the northern provinces and more in the southern provinces. The quota of most provinces is lower than 50 × 109 kWh, while Guangdong, Sichuan, Yunnan, Jiangsu, and Hunan are the five provinces with the most renewable energy quota of over 100 × 109 kWh. In general, this study provides a more rational renewable energy quota redistribution approach, which will help the government to establish an efficient and fair mechanism of renewable energy quota allocation.

1.
J.
Xu
,
T.
Lv
,
X.
Hou
,
X.
Deng
, and
F.
Liu
, “
Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles
,”
Renewable Energy
179
,
1233
1245
(
2021
).
2.
N.
Kilinc-Ata
, “
The evaluation of renewable energy policies across EU countries and US states: An econometric approach
,”
Energy Sustainable Dev.
31
,
83
90
(
2016
).
3.
S.
Carley
,
E.
Baldwin
,
L. M.
Maclean
, and
J. N.
Brass
, “
Global expansion of renewable energy generation: An analysis of policy instruments
,”
Environ. Resour. Econ.
68
(
2
),
397
440
(
2017
).
4.
B. A.
Frew
,
S.
Becker
,
M. J.
Dvorak
,
G. B.
Andresen
, and
M. Z.
Jacobson
, “
Flexibility mechanisms and pathways to a highly renewable US electricity future
,”
Energy
101
,
65
78
(
2016
).
5.
O. M.
Rouhani
,
D.
Niemeier
,
H. O.
Gao
, and
G.
Bel
, “
Cost-benefit analysis of various California renewable portfolio standard targets: Is a 33% RPS optimal?
,”
Renewable Sustainable Energy Rev.
62
,
1122
1132
(
2016
).
6.
V.
Rountree
, “
Nevada's experience with the Renewable Portfolio Standard
,”
Energy Policy
129
,
279
291
(
2019
).
7.
G.
Barbose
,
R.
Wiser
,
J.
Heeter
,
T.
Mai
,
L.
Bird
,
M.
Bolinger
,
A.
Carpenter
,
G.
Heath
,
D.
Keyser
,
J.
Macknick
,
A.
Mills
, and
D.
Millstein
, “
A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards
,”
Energy Policy
96
,
645
660
(
2016
).
8.
A.
Shivakumar
,
A.
Dobbins
,
U.
Fahl
, and
A.
Singh
, “
Drivers of renewable energy deployment in the EU: An analysis of past trends and projections
,”
Energy Strategy Rev.
26
,
100402
(
2019
).
9.
Y. W.
Huang
,
N.
Kittner
, and
D. M.
Kammen
, “
ASEAN grid flexibility: Preparedness for grid integration of renewable energy
,”
Energy Policy
128
,
711
726
(
2019
).
10.
S.
Wang
,
Y.
Huang
,
I.
Vorushylo
,
H.
Chen
,
D.
Mclarnon
,
P.
Macartain
, and
N.
Hewitt
, “
Economic assessment of high renewable energy penetration scenario in 2030 on the interconnected Irish power system
,”
Energy Policy
145
,
111774
(
2020
).
11.
T.
Kwon
, “
Policy synergy or conflict for renewable energy support: Case of RPS and auction in South Korea
,”
Energy Policy
123
,
443
449
(
2018
).
12.
P.
Simshauser
, “
Renewable Energy Zones in Australia's National Electricity Market
,”
Energy Econ.
101
,
105446
(
2021
).
13.
S.
Carley
,
L. L.
Davies
,
D. B.
Spence
, and
N.
Zirogiannis
, “
Empirical evaluation of the stringency and design of renewable portfolio standards
,”
Nat. Energy
3
(
9
),
754
763
(
2018
).
14.
D.
Young
and
J.
Bistline
, “
The costs and value of renewable portfolio standards in meeting decarbonization goals
,”
Energy Econ.
73
,
337
351
(
2018
).
15.
G.
Wang
,
Q.
Zhang
,
Y.
Li
, and
B. C.
Mclellan
, “
Efficient and equitable allocation of renewable portfolio standards targets among China's provinces
,”
Energy Policy
125
,
170
180
(
2019
).
16.
B.
Wang
,
Y.
Wei
, and
X.
Yuan
, “
Possible design with equity and responsibility in China's renewable portfolio standards
,”
Appl. Energy
232
,
685
694
(
2018
).
17.
R.
Han
,
J.
Li
, and
Z.
Guo
, “
Optimal quota in China's energy capping policy in 2030 with renewable targets and sectoral heterogeneity
,”
Energy
239
,
121971
(
2022
).
18.
D.
Zhou
,
F.
Hu
,
Q.
Zhu
, and
Q.
Wang
, “
Regional allocation of renewable energy quota in China under the policy of renewable portfolio standards
,”
Resour., Conserv. Recycl.
176
,
105904
(
2022
).
19.
H.
Jiang
,
X.
Shao
,
X.
Zhang
, and
J.
Bao
, “
A study of the allocation of carbon emission permits among the provinces of China based on fairness and efficiency
,”
Sustainability
9
(
11
),
2122
(
2017
).
20.
F.
Li
,
F.
Wu
, and
L.
Chen
, “
Harmonious allocation of carbon emission permits based on dynamic multiattribute decision-making method
,”
J. Clean. Prod.
248
,
119184
(
2020
).
21.
Y.
Kong
,
T.
Zhao
,
R.
Yuan
, and
C.
Chen
, “
Allocation of carbon emission quotas in Chinese provinces based on equality and efficiency principles
,”
J. Clean. Prod.
211
,
222
232
(
2019
).
22.
K.
Fang
,
Q.
Zhang
,
Y.
Long
,
Y.
Yoshida
,
L.
Sun
,
H.
Zhang
,
Y.
Dou
, and
S.
Li
, “
How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China's carbon emission allowance
,”
Appl. Energy
241
,
380
389
(
2019
).
23.
W.
He
,
B.
Zhang
,
Y.
Li
, and
H.
Chen
, “
A performance analysis framework for carbon emission quota allocation schemes in China: Perspectives from economics and energy conservation
,”
J. Environ. Manage.
296
,
113165
(
2021
).
24.
Y.
Zhang
, “
Research on China's regional carbon emission quota allocation in 2030 under the constraint of carbon intensity
,”
Math. Probl. Eng.
2020
,
8851062
.
25.
Q.
Wu
and
H.
Zhang
, “
Research on optimization allocation scheme of initial carbon emission quota from the perspective of welfare effect
,”
Energies
12
(
11
),
2118
(
2019
).
26.
X.
Cui
,
T.
Zhao
, and
J.
Wang
, “
Allocation of carbon emission quotas in China's provincial power sector based on entropy method and ZSG-DEA
,”
J. Clean. Prod.
284
,
124683
(
2021
).
27.
Z.
Miao
,
Y.
Geng
, and
J.
Sheng
, “
Efficient allocation of CO2 emissions in China: A zero sum gains data envelopment model
,”
J. Clean. Prod.
112
,
4144
4150
(
2016
).
28.
Y.
Wang
,
H.
Zhao
,
F.
Duan
, and
Y.
Wang
, “
Initial provincial allocation and equity evaluation of China's carbon emission rights—Based on the Improved TOPSIS method
,”
Sustainability
10
(
4
),
982
(
2018
).
29.
J.
Wu
,
Q.
Guo
,
J.
Yuan
,
J.
Lin
,
L.
Xiao
, and
D.
Yang
, “
An integrated approach for allocating carbon emission quotas in China's emissions trading system
,”
Resour., Conserv. Recycl.
143
,
291
298
(
2019
).
30.
A.
Charnes
,
W. W.
Cooper
, and
E.
Rhodes
, “
Measuring the efficiency of decision making units
,”
Eur. J. Oper. Res.
2
(
6
),
429
444
(
1978
).
31.
M. P. E.
Lins
,
E. G.
Gomes
,
J. C. C. B.
Soares De Mello
, and
A. J. R.
Soares De Mello
, “
Olympic ranking based on a zero sum gains DEA model
,”
Eur. J. Oper. Res.
148
(
2
),
312
322
(
2003
).
32.
E. G.
Gomes
and
M. P. E.
Lins
, “
Modelling undesirable outputs with zero sum gains data envelopment analysis models
,”
J. Oper. Res. Soc.
59
(
5
),
616
623
(
2008
).
33.
T.
Lin
and
J. F.
Ning
, “
Study on allocation efficiency of carbon emission permit in EUETS based on ZSG-DEA model
,”
J. Quant. Tech. Econ.
28
(
03
),
36
50
(
2011
).
34.
F.
Sun
and
J.
Yu
, “
Improved energy performance evaluating and ranking approach for office buildings using simple-normalization, entropy-based TOPSIS and K-means method
,”
Energy Rep.
7
,
1560
1570
(
2021
).
35.
G.
Ma
,
X.
Li
, and
J.
Zheng
, “
Efficiency and equity in regional coal de-capacity allocation in China: A multiple objective programming model based on Gini coefficient and Data Envelopment Analysis
,”
Resour. Policy
66
,
101621
(
2020
).
36.
C.
Xu
, “
Determinants of carbon inequality in China from static and dynamic perspectives
,”
J. Clean. Prod.
277
,
123286
(
2020
).
37.
T.
Sueyoshi
,
J.
Qu
,
A.
Li
, and
X.
Liu
, “
A new approach for evaluating technology inequality and diffusion barriers: The concept of efficiency Gini coefficient and its application in Chinese provinces
,”
Energy
235
,
121256
(
2021
).
38.
V.
Bianco
,
L.
Proskuryakova
, and
A.
Starodubtseva
, “
Energy inequality in the Eurasian Economic Union
,”
Renewable Sustainable Energy Rev.
146
,
111155
(
2021
).
39.
F.
Chen
,
T.
Zhao
,
H.
Xia
,
X.
Cui
, and
Z.
Li
, “
Allocation of carbon emission quotas in Chinese provinces based on super-SBM model and ZSG-DEA model
,”
Clean Technol. Environ.
23
(
8
),
2285
2301
(
2021
).
You do not currently have access to this content.